

R3265/3271 series

Spectrum Analyzer INSTRUCTION MANUAL

MANUAL NUMBER OEJ00 9608

Applicable model

R3265

R3365

R3265P

R3271

R3371

R3271P

The product is a Strategic Commodity subject to COCOM regulations.

It should not be exported without the proper authorization from Japanese government.

ADVANTEST CORPORATION

Table of Power Cable options

There are six power cable options (refer to following table). Order power cable options by Accessory Codes.

	Plug Configuration	Standards	Rationg, Color and Length	Accessory Codes (Option Number)
1		JIS: Japan Law on Electrical Appliances	125V at 7A Black 2m (6ft)	Straight: A01402 (Standard) Angled: A01412
2		UL: United States of America CSA: Canada	125V at 7A Black 2m (6ft)	Straight: A01403 (Option 95) Angled: A01413
3		CEE: Europe VDE: Germany OVE: Austria SEMKO: Sweden DEMKO: Denmark KEMA: Holland FIMKO: Finland NEMKO: Norway CEBEC: Belgium	250V at 6A Gray 2m (6ft)	Straight: A01404 (Option 96) Angled: A01414
4		SEV: Switzerland	250V at 6A Gray 2m (6ft)	Straight: A01405 (Option 97) Angled: A01415
.5		SAA: Australia, New Zealand	250V at 6A Gray 2m (6ft)	Straight: A01406 (Option 98) Angled:
6		BS: United Kingdom	250V at 6A Black 2m (6ft)	Straight: A01407 (Option 99) Angled: A01417

PREFACE

All descriptions on the R3265/3271 manual are also applicable to the R3365/3371.

Table of R3265/3271 series-related manuals

	Manual name	Contents	Remarks
(1)	R3265/3271 SERIES SPECTRUM ANALYZER INSTRUCTION MANUAL (THIS MANUAL)	Part 1: Explanation of accessories, panel, functions, operation, etc. Part 2: Performance test (Calibration), Adjustment	This manual is provided with the R3265/3271 main unit.
(2)	R3265/3271 SERIES QUICK GUIDE	Explanation and examples of the R3265/3271.	This manual is provided with the R3265/3271 main unit.
(3)	R3265/3271 SERIES OPT 15 INSTRUCTION MANUAL	Part 1: Guide Part 2: Reference	This manual is provided with the R3265/3271 option 15.
(4)	R3265/3271 SERIES OPT 73 INSTRUCTION MANUAL	Part 1: General - same contents as sections 6.1 and 6.2 in the instruction manual No. 1 shown above. Part 2: GPIB command expansion mode 1, supporting 8562 commands Part 3: GPIB command expansion mode 2, supporting 8566 commands	This manual is provided with the R3265/3271 option 73.
(5)	R3265/3271 MAINTENANCE MANUAL	Introdaction Specifications Performance test (Calibration) Adjustment Troubleshooting Replaceable mechanical parts Replaceable electrical parts, Location and circuit diagrams	Sold separately.

	PART1
R3265	/3271 INSTRUCTION

Table of Contents

TABLE OF CONTENTS

1.	INTRODUCTION	1-1
	Outline of the Analyzer Before You Use the Analyzer	1-2 1-4
1	.2.1 Checking Accessories	1-4
	.2.2 Checking the Power Source	1-5
	.2.3 Operating Conditions	1-7
1.3	Storing, Cleaning, and Transporting the Analyzer	1-8
2.	PANELS	2-1
2.1	Front Panel	2-2
2.2	Rear Panel	2-7
3.	BASIC OPERATIONS	3-1
3.1	Panel Keys and Softkeys	3-2
	Display	3-4
3.3	Basic Measurement Techniques	3-5
4.	MEASUREMENT EXAMPLES	4-1
4.2	Measuring Frequencies	4- 2 4-6
4	Modulation Indexes	4-6
•	Modulation Indexes	4-9
4.3	Measuring FM Signals	4-11
	.3.1 Measuring FM Signals With Low Modulation Frequencies and High	
	Modulation Indexes	4-12
4	.3.2 Measuring FM Signals With High Modulation Frequencies and Small	
	Modulation Indexes	4-14
	.3.3 Measuring FM Signal Peak Shifts (△fpeak)	4-15
	.3.4 Measuring Small FM Modulation Indexes	4-16
	Measuring Pulse-modulated Signals	4-18
	Measuring Occupied Bandwidths (OBW)	4-20
	Measuring Adjacent Channel Leak Power (ADJ)	4-23
	Analyzing Burst Signal Spectra	4-28
	Measuring with Tracking Generator (R3365/3371 only)	4-29
4	.8.1 Examples of Amplitude-frequency Characteristic Measurement	4-29

C-1 Jun 25/93

Table o	of Contents
4.8.2 Examples of Amplitude flatness Characteristics Massurement	4.00
4.8.2 Examples of Amplitude-flatness Characteristics Measurement	4-38
4.8.3 Caution on Operations of Tracking Generator	4-43
5. KEY FUNCTIONS	5-1
5.1 Basic Key Functions	5-2
5.1.1 Center Frequency	5-2
5.1.2 Frequency Span	5-8
5.1.3 Start and Stop Frequency	5-11
5.1.4 Reference Level	5-12
5.1.5 Coupling Functions	5-14
5.1.6 Menu Keys	5-20
5.2 Trace Section Functions	5-27
5.3 Marker Section Functions	5-33
5.3.1 Marker ON	5-33
5.3.2 Peak Search	5-43
5.4 User-Defined Softkey Functions	5-56
5.5 Memory Card Functions	5-60
5.5.1 Initializing the Memory Card and Saving or Recalling Custom Menus	5-60
5.5.2 Saving Internal Back-up Memory Data to the Memory Card	5-64
5.5.3 How to Handle a Memory Card	5-66
5.6 Save and Recall Functions	5-69
5.6.1 Save Function	5-70
5.6.2 Recall Function	5-79
5.7 Preset and Last State Functions	5-83
5.7.1 Preset	5-83
5.7.2 Last State	5-84
5.8 Calibration Function	5-85
5.9 Plotter Functions	5-88
5.10 Label Function	5-96
5.11EMC Function	5-99
5.12 Date Function	5-112
5.13 Utility Function	5-113
5.14 Measurement Window Function	5-117
5.15 Printer Output	5-122
5.16 Average Electrical Power Measurement Functions	5-126
5.17 Tracking Generator Functions (R3365/3371 only)	5-134
6. GPIB: REMOTE PROGRAMMING	6-1
6.1 Overview of the GPIB	6-2
6.2 GPIB Specifications	6-2
6.3 Initializing the Analyzer	. 6-3 6-7
6.3.1 Setting the Analyzer's GPIB Address	6-7

Table	of Contents
6.2.2 Defining the Delimiter	6-7
6.3.2 Defining the Delimiter	6-7 6-7
6.5 Query Syntax (Talker)	6-11
6.6 Inputting and Outputting Trace Data	6-14
6.7 Service Request (SRQ)	6-19
6.8 GPIB Codes	6-21
	V = .
7. OPTION FUNCTION	7-1
7.1 Serial I/O Function (when option 02 is installed)	7-1
7.1.1 Specifications	7-2
7.1.2 Connection	7-5
7.1.3 Communication Port Setting	7-8
7.1.4 Message Format	7-14
7.1.5 Difference from the GPIB Remote Programming	7-15
7.1.6 Sample Programs	7-16
7.1.7 Data Communication Error	7-26
7.1.8 Control Character Code List	7-27
7.1.9 HP-BASIC Sample Programs	7-28
7.1.10 Exception Processing	7-30
7.2 GATED SWEEP, and DELAY SWEEP Function	
(when option 71 is installed)	7-31
7.2.1 GATED SWEEP function	7-31
7.2.2 DELAY SWEEP function	7-35
7.3 Simulated Analog Display Function	7-40 7-41
7.3.1 Functional Explanation	7-41 7-45
7.3.2 GPIB remote programming	7-43 7-48
7.4.1 Total Power Measurement Function	7-48 7-48
7.4.2 Limit Line PASS/FAIL Function	7-40 7-53
7.4.3 Adjacent Channel Leakage Power Measurement Function with	
Attached Root Nyquist Filter	7-60
7.4.4 Alternated Modulation Distortion Measurement Function	7-66
8. TROUBLESHOOTING	8-1
8.1 Inspection and Diagnosis	8-2
9. THEORY OF OPERATION	9-1
9.1 Block Descriptions	9-2
9.2 Block Diagram	9-4

C-3

	Table of C	<u>Contents</u>
10. SPECIFICATIONS		10-1
10.1 R3265/3365 Specifications		10-2 10-10 10-18
APPENDIX		A-1
A.1 Glossary A.2 Level Scalings A.3 Menu Lists A.4 List of Messages		A-1 A-8 A-9 A-18
EXTERNAL VIEW(R3265)		EXT 1

List of Illustrations

LIST OF ILLUSTRATIONS

No.	Title	E
1-1	Checking the Fuse	_
1-2	Power Cable Plug and Adapter	
1-3	Operating Conditions	
2-1	Front Panel	
2-2	Rear Panel	
3-1	Display	
3-2	Wiring	
3-3	Initial Screen (R3271)	
3-4	Setting the center frequency	
3-5	Setting the span	
3-6	Peak Marker	
4-1	Measuring Frequency With a Normal Marker	
1-2	Measuring Frequency in Frequency Counter Mode	
1-3	Measuring Frequency in Marker Counter Mode	
1-4	Measuring an AM Signal	
- 5	Modulation Frequency of the AM Signal	
-6	AM Modulation Index	
1-7	AM Signal With a High Modulation Frequency and a Small Modulation Index	
l-8	Side Band Level: Relationship Between the Carrier Level (ESB - EC)	
	and the Modulation Index m (%)	
-9	Measuring an FM Signal	
-10	FM signal With Low Modulation Frequency	
-11	FM Signal With High Modulation Frequency and Small Modulation Index	
-12	FM Signal With Small △ fpeak	
-13	FM Signal With Large △ fpeak	
-14	FM Signal fc and Ec	·
-15	FM Signal fSB and ESB	
-16	Pulse-modulated Signal	
-17	Measuring the OBW	
-18	Measuring the Adjacent Channel Leak Power (ADJ POINT)	
-19	Measuring the Adjacent Channel Leak Power (ADJ GRAPH)	
-20	Connecting with Through State	
-21	Connecting with DUT	
-22	Connecting with Through State	
99	Trace of the feedthrough characteristic	
-23		

F-1

Jun 25/93

5.1-1 Center Frequency 5.1-2 Entering the External Mixer Correction Data 5.1-3 Frequency Span 5.1-4 Start and Stop Frequency 5.1-5 Reference Level 5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals 5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 ∆X and △Y Resolution 5.3-8 Setting △ X and △Y 5.5-1 External View of the Memory Card		
 5.1-2 Entering the External Mixer Correction Data 5.1-3 Frequency Span 5.1-4 Start and Stop Frequency 5.1-5 Reference Level 5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals 5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-3 Initalizing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data 	5.1-1	
 5.1-3 Frequency Span 5.1-4 Start and Stop Frequency 5.1-5 Reference Level 5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals 5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.5-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data 	•••	
5.1-4 Start and Stop Frequency 5.1-5 Reference Level 5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals 5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-2 Instalizing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement	• • • •	
5.1-5 Reference Level 5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals 5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals 5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 6.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.5-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.1-7 VBW = 300kHz 5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.1-8 VBW = 3kHz 5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 ΔX and ΔY Resolution 5.3-8 Setting Δ X and ΔY 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data <td></td> <td>-</td>		-
5.1-9 SWP = AUTO (500ms) 5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.1-10 SWP = 50ms 5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.1-11 Triggering with an On-screen Marker 5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.1-12 Setting the Squelch Level 5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.2-1 Basic Waveform in VIEW Mode 5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.2-2 Second Higher Harmonics in WRITE B 5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.2-3 AVG = None 5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.2-4 AVG = 31st 5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.3-1 Normal Marker 5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.3-2 Delta Marker 5.3-3 Noise/Hz Level Measurement 5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
 Noise/Hz Level Measurement X dB Down Executing Auto Peaking Peak Search Screen AX and AY Resolution Setting A X and AY User-Defined Display External View of the Memory Card Inserting and Removing the Memory Card Initializing the Memory Card Memory Card Battery Replacement Setting Saved Data Explanation of the List Data in Detail Entering the Title of the Saved Data 		
5.3-4 X dB Down 5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.3-5 Executing Auto Peaking 5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.3-6 Peak Search Screen 5.3-7 △X and △Y Resolution 5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.3-7		
5.3-8 Setting △ X and △Y 5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.4-1 User-Defined Display 5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		
5.5-1 External View of the Memory Card 5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data		Setting \triangle X and \triangle Y
5.5-2 Inserting and Removing the Memory Card 5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data	5.4-1	User-Defined Display
5.5-3 Initializing the Memory Card 5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data	5.5-1	External View of the Memory Card
5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data	5.5-2	Inserting and Removing the Memory Card
5.5-4 Memory Card Battery Replacement 5.6-1 List of Saved Data 5.6-2 Explanation of the List 5.6-3 Data in Detail 5.6-4 Entering the Title of the Saved Data	5.5-3	Initializing the Memory Card
5.6-2 Explanation of the List 5.6-3 Data in Detail	5.5-4	
5.6-3 Data in Detail	5.6-1	List of Saved Data
5.6-4 Entering the Title of the Saved Data	5.6-2	Explanation of the List
3	5.6-3	Data in Detail
5.6-5 Selecting the Data Type to Be Saved	5.6-4	Entering the Title of the Saved Data
old o colouring the batta type to be dayed	5.6-5	Selecting the Data Type to Be Saved
5.6-6 Listing the Initialization Data	5.6-6	
5.6-7 Recall Data List	5.6-7	
5.6-8 Recall Data in Detail	5.6-8	
5.9-1 Plotter Connection	5.9-1	
5.9-2 Example Dip Switch Setting		

Plotter Operation Window

Plotter Error Message

Label Display

TR1722 Antenna Factor

5.9-3

5.9-4

5.10-1

5.11-1

5-89

5-94

5-97

5-100

List of Illustrations

List of Illustrations

5.11-2	Entering a Limit Line	5-102
5.11-3	The displayed waveform and limit line do not match	5-104
5.11-4	The displayed waveform and limit line match	5-104
5.11-5	The displayed waveform and limit line do not match	5-106
5.11-6	The displayed waveform and limit line match	5-106
5.11-7	Measuring the Power Source Terminal Voltage	5-110
5.13-1	Waveform to Determine the OBW	5-114
5.13-2	Adjacent Channel Leak Power in Graph	5-114
5.14-1	Initial Screen of the Measurement Window	5-117
5.14-2	Partial Sweep Within a Window	5-120
5.14-3	Peak Search Within a Window	5-121
5.15-1	R3265/3271 and Printer Connection Diagram	5-122
5.15-2	DIP Switch for Address Setting	5-123
5.15-3	Printing Precision Set at LOW (Normal Size)	5-125
5.15-4	Printing Precision Set at HIGH (Half Size)	5-125
5.16-1	Average Electrical Power Measurement	5-126
5.16-2	Average Electrical Power Density Measurement	5-127
5.16-3	Average Electrical Power Measurement in Measuring Window	5-129
6.1-1	GPIB Bus Configuration	6-4
6-2	GPIB Connector Pin Assignment	6-5
6-3	Signal Line Termination	6-5
6-4	Relation Between Screen Grid and Data Points	6-14
7-1	Personal Computer Connection	7-5
7-2	RS-232C Communication Port	7-6
7-3	Cable Connection	7-6
7-4	Option Select Menu	7-9
7-5	Baud Rate Setting Menu	7-9
7-6	Data Length Setting Menu	7-10
7-7	Stop Bit Setting Screen	7-10
7-8	Parity Setting Menu	7-11
7-9	Flow Control Setting Menu	7-11
7-10	Interval Setting Menu	7-12
7-11	Screen of the Communication Port in Open state	7-12
7-12	Screen of the Communication Port in Closed state	7-13
7-13	Waveform obtained by normal measurement.	7-32
7-14	Waveform obtained by measurement in GATED SWEEP OFF as the setup mode	
	(Move the WINDOW to the section to be gated.)	7-32
7-15	Waveform obtained by measurement in GATED SWEEP ON as the setup mode	. 02
	(GATED SWEEP measurement.)	7-32
7-16	Waveform obtained by the setup mode (Move the WINDOW to the section be	. 02
	expanded.)	7-36

List of Illustrations

Waveform obtained by measurement in DELAY SWP ON (The section in the	
WINDOW is expanded.)	7-36
Display when PASS	7-54
Display when FAIL	7-54
Judgment Range when Measuring Window is ON	7-55
PASS/FAIL returned value	7-57
IF Bandwidth	A-1
Reference Level	A-2
Occupied Bandwidth	A-3
Spurious Response	A-4
Noise Sideband	A-5
Bandwidth Selectivity	A-6
Bandwidth Switching Accuracy	A-6
	A- 7
Level Scalings	A-8
	WINDOW is expanded.) Display when PASS Display when FAIL Judgment Range when Measuring Window is ON PASS/FAIL returned value IF Bandwidth Reference Level Occupied Bandwidth Spurious Response Noise Sideband Bandwidth Selectivity Bandwidth Switching Accuracy VSWR

List of Tables

LIST OF TABLES

_	Title	<u>Page</u>
	Accessories	1-4
	Power Supply Specifications	1-5
	Center Frequency Display Resolution	5-3
	Allowable External Mixer Frequency Bandwidths	5-5
	Frequency Span Display Resolution	5-9
	RBW Automatically Selected	5-15
	Functions That Cannot Be Used in Digital IF	5-19
	Compatible Plotters	5-88
	Plotter Pen Assignments	5-95
	The CISPR Specifications for RBW	5-101
	Usable Printer	5-122
	Analyzer GPIB Interface Codes	6-6
	Delimiter Specification Codes	6-7
	Trace Accuracy Commands	6-14
	Service Request ON/OFF Codes	6-19
	Status Register Bit Assignments	6-19
	Examples or Data Entry (GPIB codes with asterisk)	6-67
	Serial Input/Output Interface Signal Names	7-7
	Status Byte Control Codes	7-23
	Status Byte Information	7-23
	Panel Lock Code	7-25

1. INTRODUCTION

1. INTRODUCTION

This chapter briefly describes the ADVANTEST R3265/3271 Spectrum Analyzer and describes set up procedures and operating conditions for the analyzer. Be sure to read this chapter before using the analyzer.

1.1 Outline of the Analyzer

1.1 Outline of the Analyzer

The R3265/3271 series is a swept-tuned spectrum analyzer with an analog-to-digital section for displaying and analyzing data. It operates in the following frequency, input, and display ranges:

Frequency range:

100 Hz to 8.0 GHz (R3265)

100 Hz to 26.5 GHz (R3271)

Input range:

-140 dBm to +30 dBm (R3265)

-135 dBm to +30 dBm (R3271)

Display range:

95 dB

Frequency range:

100 Hz to 8.0 GHz (R3265P)

100 Hz to 26.5 GHz (R3271P)

Dynamic range

Signal to Distortion

Harmonic : 500 MHz ≤ f < 800 MHz ;

800 MHz≤f< 1.0GHz

96dB 101dB

1.0 GHz to 3.6GHz

104dB

> 3.5GHz

112dB (R3265P)

110dB (R3271P)

In these ranges, the analyzer features a maximum resolution of 10 Hz, a residual FM (frequency modulation) of 3 HzP-P, and a noise sideband of -112 dBc/Hz (at 10 kHz from the carrier). The analyzer is equipped with GPIB remote control and a memory card function for saving and recalling waveform data and panel settings.

In the option, there are delay sweep (option 71), a built-in controller (option 15), and GPIB command extension (option 73).

Refer to Instruction Manual of the separate volume for the usage of option 15 or option 73.

1.1 Outline of the Analyzer

The analyzer provides the following additional features:

- the ability to sweep over a wide frequency range: from 100 Hz to 26.5 GHz (for the R3271) or from 100 Hz to 8 GHz (for the R3265). The analyzer can also perform a log sweep over the range from 1 kHz to 1 GHz.
- high-frequency resolution of up to 10 Hz, which permits analysis of adjacent signals and spurious signals at high frequencies.
- a precise measurement mode that uses the analyzer's built-in reference crystal to measure with 1 Hz accuracy signals too weak to measure with a counter.
- a memory card that can store waveform and control settings.
- the ability to observe directly the electric field strength and the QP (quasi-peak) value.
- a digital memory CRT screen that displays signal traces without flickering. Digital memory also allows marker functions for accurate and easy reading of trace values.
- a zero span mode that allows the analyzer to be set to a sweep time of 50μ s. This is useful for analyzing wave bursts and modulation.
- two independent channels of digital memory for simultaneous display of two traces.
- computer-controlled operation using a GPIB command set.

1.2 Before You Use the Analyzer

Before you use the analyzer, check it and its accessories as described below. Make sure your power source conforms to the specifications in section 1.2.2 and that operating conditions are as specified in section 1.2.3.

1.2.1 Checking Accessories

When you first receive the analyzer, check for shipping damage or imperfections, and check that it has all the accessories listed in Table 1-1. If any part is damaged or missing, contact Advantest or the nearest support office at the addresses and phone numbers listed at the end of this manual. (When ordering additional accessories, be sure to specify the type code and stock number.)

Table 1-1 Accessories

Part Name	Sp	ecification	Qua	Remarks	
	Type Code	Stock No.	R3265/3271	R3365/3371	
Power cable	A01412	DCB-DD3130×01	1	1	
Input cable	MI-09	DCB-FF0392	1	2	
	MC-61	DCB-FF0383	1	1	
N-BNC conversion adapter	JUG-201A/V	JCF-AF001E×03	1	2	
Power fuse	21806.3	DFT-AA6R3A	2	2	
Memory card	MAC1101BAB	SEE-MAC1101BAB	1	1	
Instruction manual	1		1	1	Japanese version
	_	ER3265/3271SERIES			English version
Quick guide	_	JR3265/3271(Q)	JR3265/3271(Q) 1 1		Japanese version
	_	ER3265/3271(Q)			English version

1.2.2 Checking the Power Source

Before you turn the analyzer on, make sure the power source you use meets all specifications in this section.

CAUTION

The analyzer may be damaged if the power supply conditions listed in Table 1-2 are not satisfied.

The analyzer may be damaged if the fuse rating is not 6.3 A/250 V.

(1) Checking Power Requirements

The analyzer's power supply operates in both of two voltage ranges: 90 V to 132 V, or 198 V to 250 V. It automatically switches to accommodate the proper range.

Table 1-2 Power Supply Specifications

Input voltage	90 V to 132 V	198 V to 250 V		
Frequency	48 Hz to 440 Hz	48 Hz to 66 Hz		
Power consumption	400VA or below			

(2) Checking the Fuse

The analyzer's fuse is rated at 6.3 A/250 V for both the 90 V to 132 V range and the 198 V to 250 V range. The fuse is located in the rear panel power connector.

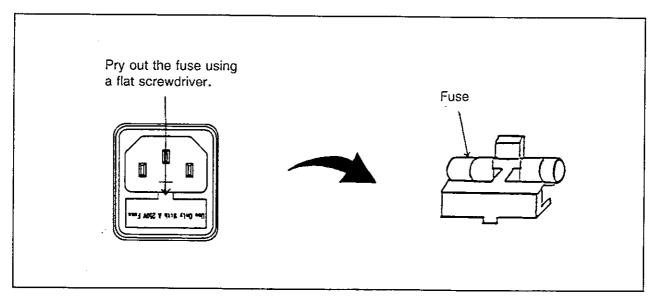


Figure 1-1 Checking the Fuse

(3) Checking the Power Cable

The standard power cable plug has three pins. For two-pin outlets, use a two-pin adapter and ground either the adapter's grounding lead or the grounding terminal on the analyzer's rear panel.

The two-pin adapter A09034 (KPR-18) conforms to industry standards. The adapter's pins have different widths as shown in Fig.1-3 (b). When inserting the adapter in the receptacle, be sure to orient it properly. If the A09034 will not go into the receptacle, use the optional adapter KPR-13.

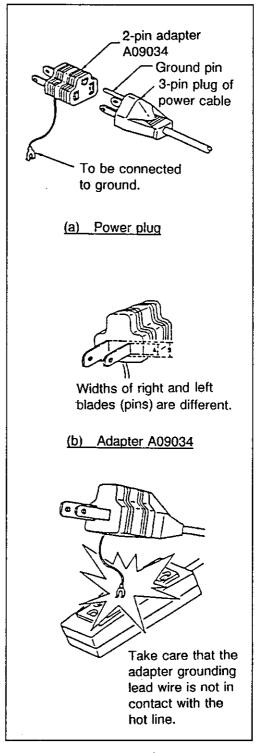


Figure 1-2 Power Cable Plug and Adapter

1.2.3 Operating Conditions

- (1) Keep the analyzer away from direct sunlight, dust, corrosive gases, and vibration.
- (2) Operate the analyzer only at temperatures between 32° F (0° C) and 122° F (50° C), and at a humidity below 85%.
- (3) The analyzer is designed to resist noise from AC power lines. However, you should still take steps to minimize power line noise. If necessary, install a noise suppressing filter in the analyzer's power supply.

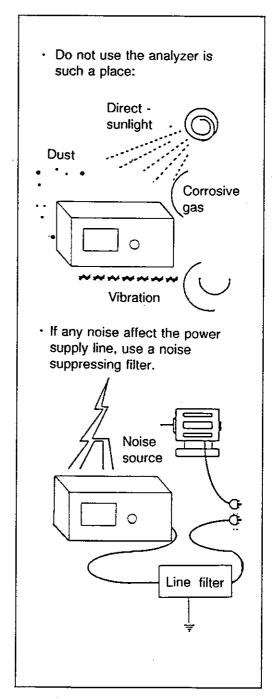


Figure 1-3 Operating Conditions

1.1 Outline of the Analyzer

1.3 Storing, Cleaning, and Transporting the Analyzer

(1) Storing the Analyzer

Always keep the analyzer at temperatures between -4° F (-20° C) and 140° F (60° C). If the analyzer will not be used for a long time, wrap it in a vinyl cover or put it in a corrugated cardboard box in a dry place not exposed to direct sunlight.

(2) Cleaning the Analyzer's Display Screen

Clean the analyzer's anti-glare filter periodically with a soft cloth. Normally, you will only need to clean the filter surface. However, if the CRT display screen itself is dirty, remove the filter and clean the CRT with a soft cloth.

Never use cleaning solvents that affect plastic, such as benzene, toluene, or acetone.

(3) Transporting the Analyzer

If you need to transport the analyzer, pack it in its original packaging. If these materials aren't available, use a box made of corrugated cardboard at least 3/16 inch (5 mm) thick. Wrap the analyzer in shock absorbing material, place it in the box along with the accessories, and seal the box with packing tape.

2. PANELS

2. PANELS

This chapter briefly describes the analyzer's front and rear panels.

2.1 Front Panel

The front panel contains the following controls and connectors (refer to Figure 2-1). Access the keys labeled in blue by first pressing the shift key.

① Power switch

Supplies or cuts power.

② Memory card insertion slot

3 Eject button

Ejects the memory card.

DRIVE lamp

Lights while the memory card is operating.

(5) Ist Lo OUT connector

The output connector of the first block oscillator; connects to an

external mixer. (This connector is not used in the R3265.)

6 INTENSITY knob

Adjusts the CRT brightness.

PHONE terminal

An 8Ω earphone jack for use with the receiver function. The

analyzer also has an internal speaker.

8 PROBE POWER

Power source for accessories such as an active probe.

The output current is ± 150 mA or below.

PROBE POWER

1 : NC 2 : GND 3 : -15V 4 : +15V

S CAL OUT connector

Produces a -10 dB 25 MHz signal for automatic level calibration.

INPUT connector

N-type input connector.

(The R3271 has an SMA to N-type adapter.)

① CRT display

Displays waveforms and measurement data.

Softkey menu

display section

Displays up to seven items.

3 Softkeys

Selects items from the softkey menu.

MAIN FUNCTIONS

@ CENTER FREQUENCY key: Lets you input the center frequency.

(5) FREQUENCY SPAN key : Lets you input the frequency span.

© START key : Lets you input the sweep starting frequency.

STOP key : Lets you input the sweep end frequency.

® CPL (COUPLE) key : Lets you input the resolution bandwidth, video band

width, sweep time, and input attenuation.

REFERENCE LEVEL key : Lets you input the reference level.

MENU key : Selects trigger, detector, sweep, display line, or

tracing menus.

SWEEP lamp : Lights while a sweep is in progress.

TRACE Section

A key
: These keys control trace memory.

B key

The LEDs light in every mode except VIEW and

BLANK.

NORM key : Lets you quickly normalize the display level.

GPIB Section

② LCL (LOCAL) key : Releases external control.

B REMOTE lamp : Lights while the analyzer is remotely controlled.

ADRS key : Lets you assign a GPIB address to the analyzer.

2-3

		_ U	ser-Defined Section
20	USER key	:	The function of this key can be defined by the user.
	DEFINE key	:	Defines the USER key function.
20	RECALL key	:	Recalls previously saved settings.
	SAVE key	:	Saves the current settings.
28	SHIFT key	:	Selects the shift mode for functions marked in blue above the key.(The LED lights when this mode is selected.)
29	PRESET key	:	Initializes the analyzer.
#	LAST S key	:	Resets the analyzer to the settings it had just before the PRESET key was pressed.

		_	MARKER Section
30	ON key	:	Displays a marker for reading waveform data.
#	MULTI MKR	:	Displays up to eight markers.
30	PEAK key	:	Shifts the marker to the waveform peak.
30	MKR →(marker to) key	:	Saves the current marker values for use by other functions.
33	OFF key	:	Deletes the marker.

2.1 Front Panel

		_	DATA Section
39	Data knob		
		:	Inputs data in jog mode.
(3)	Step keys	:	Increments or decrements input data.
\$	Numeric keypad	:	Consists of numeric keys (0 to 9) and the decimal point key (.) for data input.
37	Back Space	:	Corrects input data.
38	Unit keys	:	Selects a unit and enters the set value.
#	CAL	:	Calibrates the instrument.
#	PLOT	:	Prepares the analyzer for printing to an external plotter
#	LABEL	:	Creates a label for on-screen display.
#	MEM CD	:	Formats a memory card and stores menus and settings on the card.
#	OPTION	:	Reserved for future options.
#	EMC	:	Makes Electro-Magnetic Compatibility measurements.
#	DATE	:	Sets the date and time.
#	UTIL	:	Makes occupied bandwidth and adjacent channel leak power measurements.
#	M W	;	Sets up a measurement window to limit peak searches or the sweep.
#	ENTER	:	Enters numerical data.

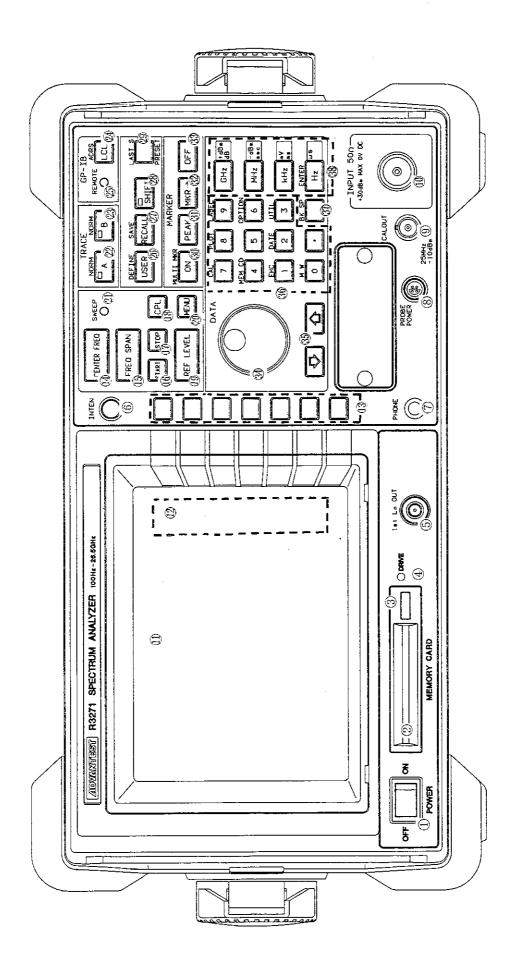


Figure 2-1 Front Panel

2.2 Rear Panel

The rear panel contains the following items (refer to Figure 2-2).

① SERIAL I/O (optional)

For future accessories.

GPIB connector

Connects the analyzer to an external controller

and plotter using a GPIB cable.

3 Controller output terminal (optional)

For future accessories.

X, 2V/nGHz output terminal

Outputs voltage in proportion to the sweep.

Output voltage: approx. -5 V to +5 V, or 2 V per

GHz of tuning frequency.

Output impedance: approx. 1 k Ω .

S Y output terminal

Outputs video signals in proportion to the trace

vertical deflection.

Output voltage: approx. 0 V to 2 V. Output impedance: approx. 220Ω

© Z output terminal

Outputs +5 V (TTL High level) while the spectrum analyzer is sweeping and 0 V (TTL Low level) during retrace. (Some plotters use these X,

Y, and Z terminals; Z is for pen up/down.)

② COMP VIDEO

Outputs to an external CRT display and VIDEO

printer.

Output impedance: approx. 75Ω (contains a

1VP-P composite signal).

S External trigger

Receives an external triggering signal.

Gated sweep control terminal

Receives a signal that stops sweep and measurement at TTL Low level, and executes

sweep and measurement at TTL High level.

10 MHz Frequency Reference input/output terminal

Outputs or receives a 10 MHz reference

frequency signal.

Output: approx. 0 dBm

Input: approx. -5 dBm to +5 dBm.

2.2 Rear Panel

1	21.4	MHz	ΙF	OUT
---	------	-----	----	-----

: Outputs final IF (21.4 MHz) signals for access to

the IF section for special applications. Bandwidth resolution: bandwidth specified

Output level: approx. 0 dBm at full scale on the

CRT

Output impedance: approx. 50Ω .

12 421.4 MHz IF OUT

Outputs 2nd IF (421.4 MHz) signals for pulsed

measurements.

Output impedance: approx. 50Ω .

PARALLEL I/O (optional)

: For future accessories.

- Warning Label
- (5) Installed options label
- Warning Label
- Cooling fan
- AC power connector and fuse
- Grounding terminal

Grounds the analyzer if the 3-pin power cable or

the 2-pin adapter cannot be used.

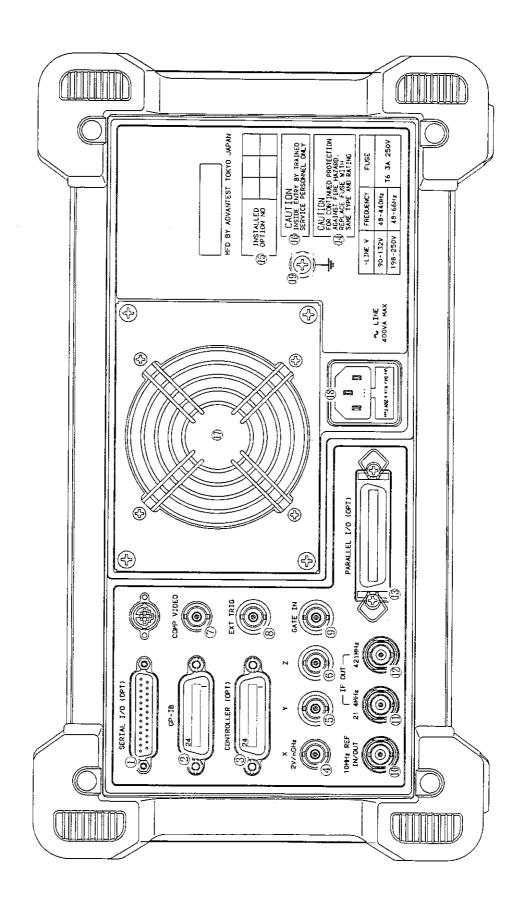
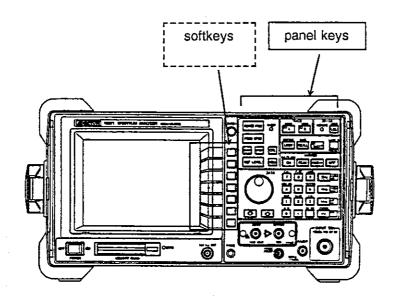


Figure 2-2 Rear Panel

MEMO Ø

3. BASIC OPERATIONS

3. BASIC OPERATIONS


This chapter explains the basic operations of the analyzer.

3-1

3.1 Panel Keys and Softkeys

Use the panel keys and softkeys to select the functions you want to use.

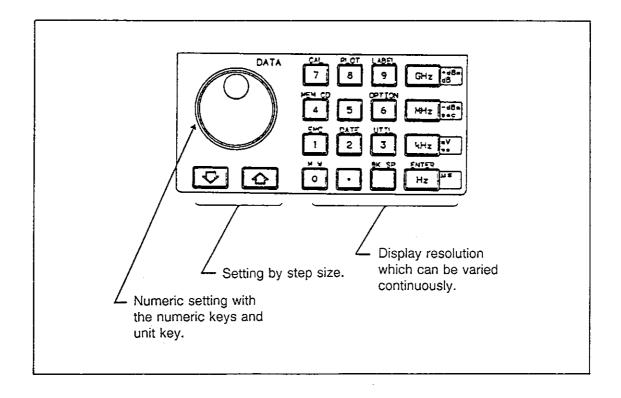
Note the following points regarding these keys.

(1) Panel keys

To use the functions written in blue, first press the SHIFT . For example, press:

MULTIMKR

SHIFT ON to set the multi marker.


(2) Softkeys

Some softkeys have selections that toggle every time the key is pressed.

The current selection appears in reverse video.

(3) Entering Data

Data can be entered in three ways.

3-3

3.2 Display

Figure 3-1 describes the information that appears on the analyzer's display.

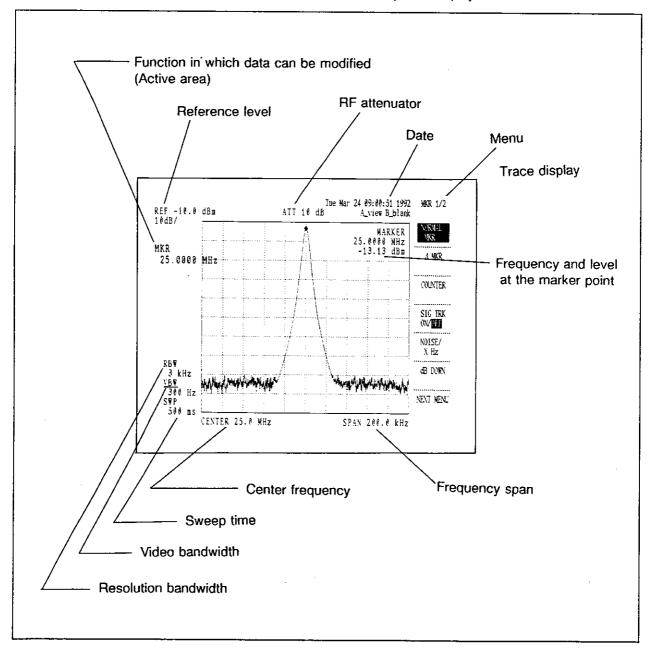


Figure 3-1 Display

3.3 Basic Measurement Techniques

This section gives an example of how to use the analyzer to measure the frequency and level of a typical signal. In this example, the signal is generated by a 430 MHz bandwidth oscillator.

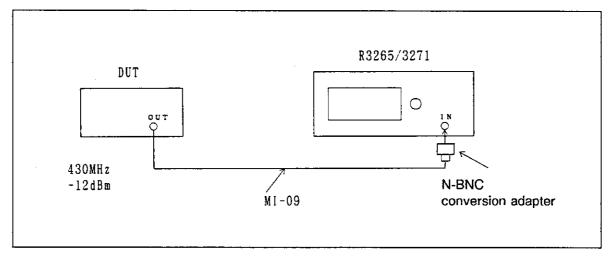


Figure 3-2 Wiring

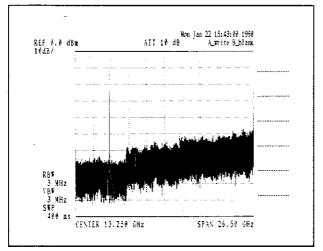


Figure 3-3 Initial Screen (R3271)

Proceed as follows:

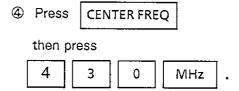
- Turn the power switch ON.The analyzer runs a self check.
- Press the key to PRESET initialize the analyzer. (Initializing

initialize the analyzer. (Initializing returns the analyzer to its factory settings.)

③ Connect the analyzer to the signal source (the oscillator in this example) as shown in Figure 3-2.

WARNING

Do not exceed the maximum input level:


Maximum input level: +30 dBm

DC couple: 0 V

An input level exceeding these values will damage the analyzer's input mixer section and will require costly repairs. If there is a possibility that the input signal level may exceed the analyzer's maximum level, use an external attenuator to lower the signal level sufficiently.

Figure 3-4 Setting the center frequency

The signal appears at the center of the screen as shown in Figure 3-4.

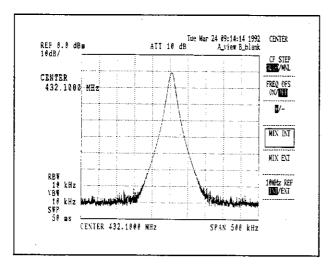


Figure 3-5 Setting the span

NOTE

When you modify the frequency span, the signal may shift from the screen center. In general, if you know the frequency of interest, use the numeric keypad to enter the frequency so that the waveform will not shift from the screen center when you set the span.

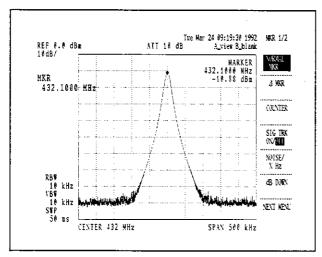
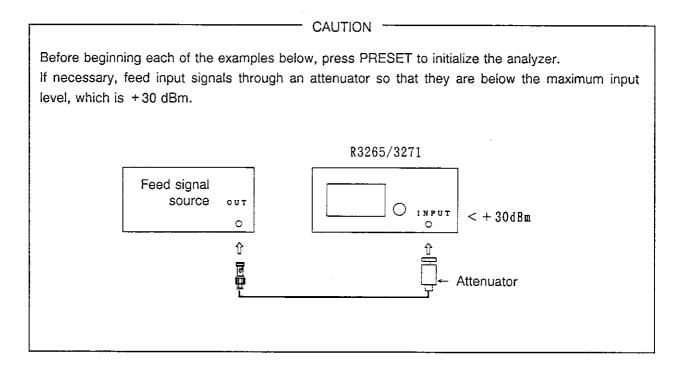


Figure 3-6 Peak Marker

© Press PEAK . A marker appears at the waveform's peak.
The frequency and the level at the marker position appear in the upper right corner of the screen.
To remove the marker, press

NOTE


To make the most accurate measurements possible, allow the analyzer to warm up for at least 30 minutes, and calibrate it as described in Section 5.8, Calibration Function, before making measurements.

MEMO Ø

·

4. MEASUREMENT EXAMPLES

This chapter gives examples that show how to use the analyzer to make various measurements.

4.1 Measuring Frequencies

These examples demonstrate the measurement of a 200 MHz signal. You can measure frequency in three ways: using a normal marker, using the frequency counter mode, or using the marker counter mode. The normal marker only makes rough frequency measurements based on the display data. The frequency counter function lets you make precise frequency measurements using the analyzer's internal frequency counter. The marker doesn't have to be exactly at the signal's peak in this mode. The marker counter function lets you make precise frequency measurements exactly at the marker position.

(1) Measuring Frequency With a Normal Marker

The normal marker lets you make quick frequency measurements. Center and magnify the input signal, then turn on the peak marker as follows. In general, a smaller span improves accuracy.

①	Press	CENTER FREQ	2	0	0	MHz
2	Press	FREQ SPAN	1	0	0	MHz
3	Press	PEAK				

The marker frequency is displayed in the upper right corner of the screen.

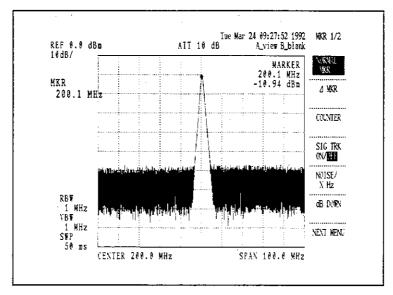
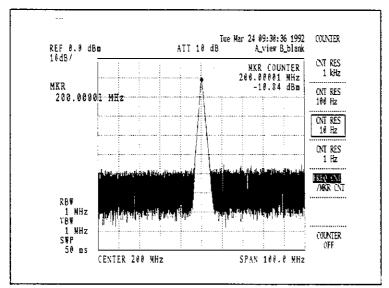


Figure 4-1 Measuring Frequency With a Normal Marker

4-2

Measurement Accuracy

± (Marker frequency x Reference source accuracy) + (Span x Span accuracy) + (0.15 × Resolution bandwidth) + 10 Hz)


Span accuracy: $\pm 3\%$ (Span > 2 MHz) $\pm 5\%$ (Span ≤ 2 MHz)

(2) Measuring Frequency in Frequency Counter Mode

Use this mode to make precision frequency measurements with the analyzer's internal frequency counter.

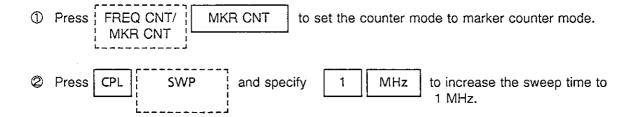
NOTE

- 1. The frequency counter mode may not operate correctly in the following cases:
 - Span > 1 GHz
 - The difference between the marker point and the signal level is 25 dB or below.
- 2. The frequency counter mode cannot be used with the signal track mode (described in section 5.3).
 - Press MARKER ON
 Press COUNTER COUNTER 10HZ to set the measurement frequency resolution to 10HZ
 Set FREQ CNT FREQ CNT This selects frequency counter mode.

The marker frequency is displayed with 10Hz resolution at the upper right corner of the screen.

In this mode, the input signal frequency can be measured even if the marker point is not at the signal peak.

Figure 4-2 Measuring Frequency in Frequency Counter Mode


Measurement Accuracy

± (Marker frequency reading x Reference source accuracy) + (5 Hz × N) + (least sig. digit)

	Frequency Band	N: Mixer Degree
R3265	0 to 8 GHz	N = 1
R3271	0 to 7.5 GHz 7.4 GHz to 15.4 GHz 15.2 GHz to 23.3 GHz 23 GHz to 26.5 GHz	N = 1 N = 2 N = 3 N = 4

(3) Measuring Frequency in Marker Counter Mode

Use this mode when the difference between the signal level and noise level (S/N) is 20 dB or less and the frequency counter cannot be used.

The marker frequency is displayed with 10 Hz resolution at the upper right of the screen.

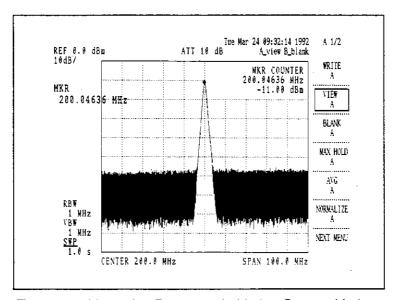


Figure 4-3 Measuring Frequency in Marker Counter Mode

Measurement Accuracy

Frequency counter mode accuracy + (Span x Sweep delay) Sweep delay: approx. 1% (if the sweep time is AUTO)

4.2 Measuring AM Signal Modulation Frequencies and Modulation Indexes

The R3265/3271 can measure the modulation frequencies and indices of a wide range of AM signals.

To measure AM signals that have low modulation frequencies and high modulation indexes, use the analyzer in zero span mode in the time domain. The AM wave modulation index m is determined as follows (see Figure 4-4(a).):

$$m(\%) = (Emax - Emin)/(Emax + Emin) \times 100$$

To measure AM signals that have high modulation frequencies and low modulation indexes, use the spectrum analyzer in the frequency domain. Compare the side band to the carrier using this formula (see Figure 4-4 (b):

$$m(\%) = 2 E_{SB}/E_{C} \times 100$$

The spectrum analyzer can also accurately measure the modulation indexes of higher harmonics. The time domain method can determine modulation indexes only in the order of 2%, while the frequency domain method can determine them in the order of up to 0.02%.

Use LINEAR mode to measure modulation indexes of 10% or above, and use LOG mode to measure modulation indexes below 10%.

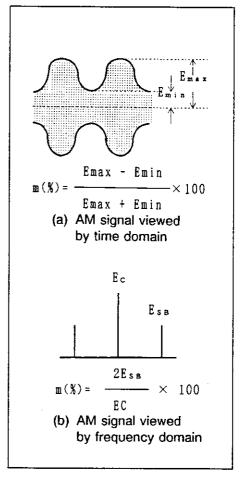
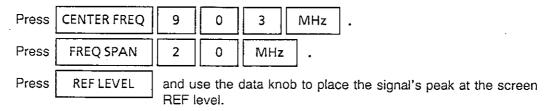
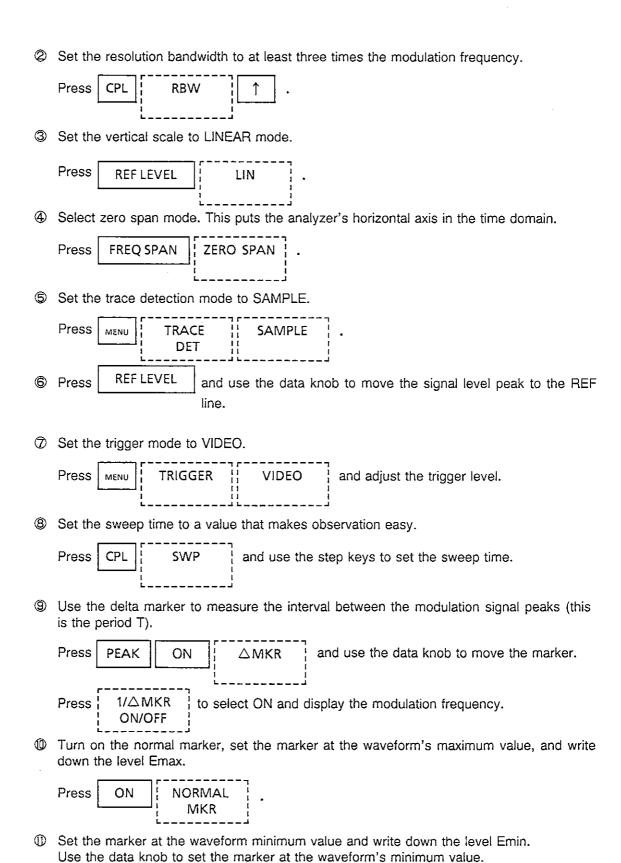



Figure 4-4 Measuring an AM Signal

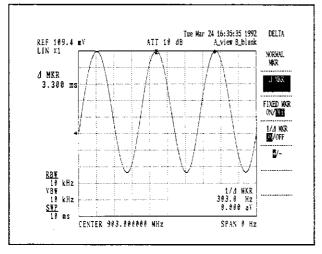
4.2.1 Measuring AM Signals With Low Modulation Frequencies and High Modulation Indexes


Procedure

① Display the signal to be measured and match its peak to the reference level. (In this example the carrier frequency is 903 MHz.)

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

4.2 Measuring AM Signal Modulation Frequencies and Modulation Indexes



4-7

Feb 28/92

① Use the following expression to determine the modulation index m:

$$m (\%) = \frac{Emax - Emin}{Emax + Emin} \times 100 (\%)$$

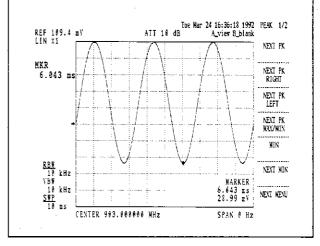


Figure 4-5 Modulation Frequency of the AM Signal

Figure 4-6 AM Modulation Index

4-8

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

4.2 Measuring AM Signal Modulation Frequencies and Modulation Indexes

4.2.2 Measuring AM Signals With High Modulation Frequencies and Small Modulation Indexes

Procedure

① Set the frequency span to a range between two and ten times the modulation frequency.

Press FREQ SPAN and use the step keys to set the span.

Set the center frequency to the carrier frequency.

Press CENTER FREQ and use the data knob to set the center frequency.

3 Set the marker at the carrier peak.

Press PEAK

⊕ Place the delta marker on the modulation signal peak and write down E_{SB} – E_c.

Press $\boxed{\mbox{ON}}$ $\boxed{\mbox{}$ $\Delta \mbox{MKR}$ $\boxed{\mbox{}}$ and use the data knob to position the delta marker.

© Use the following formula to calculate the modulation frequency fm and modulation index

fm = Delta marker frequency

$$m = \log - 1 \qquad \frac{E_{SB} - E_c + 6}{20}$$

Figure 4-8 shows the relationships between (ESB – EC) and m(%).

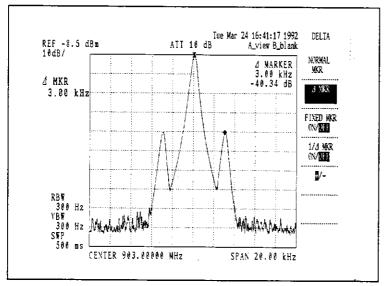


Figure 4-7 AM Signal With a High Modulation Frequency and a Small Modulation Index

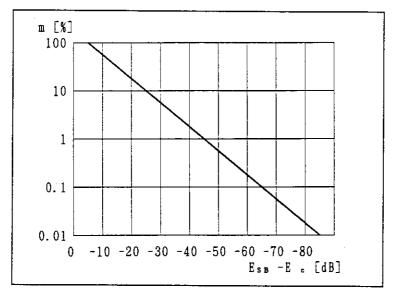


Figure 4-8 Side Band Level: Relationship Between the Carrier Level (E_{SB} – E_C) and the Modulation Index m (%)

fm = 2.97 KHz $E_{SB}-E_{C} = 40.34 \text{ dB}$

4.3 Measuring FM Signals

Common FM wave measurements include the following:

- the carrier frequency fc
- · the modulated wave frequency fm
- the frequency shift △fpeak
- the modulation index m
- the occupied frequency bandwidth.

The FM modulation index m can be expressed as $\triangle f_{peak}$ /fm. The modulation index m or frequency shift $\triangle f_{peak}$ can be obtained by varying the modulation index and determining where the carrier is at a minimum (see Figure 4-9 (a) and (b)). For example, the second sideband is the minimum in Figure 4-9 (a). This corresponds to the third peak in Figure 4-9 (b), which indicates an m value of 5.6 along the Figure's x-axis.

If the modulation frequency is too low to be analyzed sufficiently from the spectrum, the analyzer can display the amplitude change from the FM composite of the input signal using the IF bandpass filter slope. The modulated wave is then displayed on the screen. (See Figure 4-9 (c).)

If the modulation frequency is low, set the analyzer's horizontal axis to zero span mode so that it operates as a fixed tuning receiver in the time domain. You can then measure along the time axis.

If the modulation frequency is high, measure along the frequency axis and determine the modulation frequency from the frequency of the side band.

If the modulation index is small (0.8 or less), determine m from the relationship between the carrier level and the first side band level given in Figure 4-4(b).

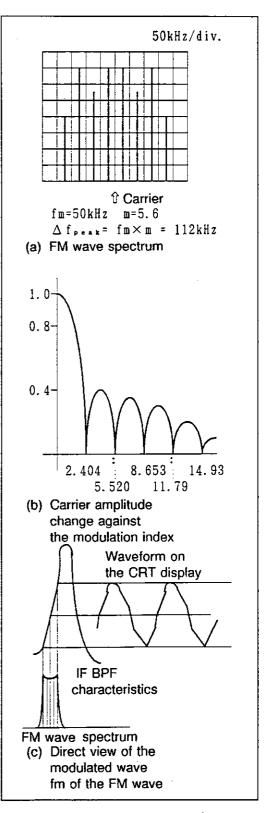
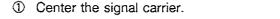
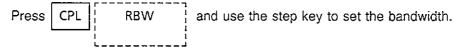
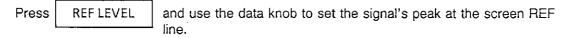



Figure 4-9 Measuring an FM Signal


4.3.1 Measuring FM Signals With Low Modulation Frequencies and High Modulation Indexes

Procedure



Press CENTER FREQ and use the step keys or data knob to set the center frequency.

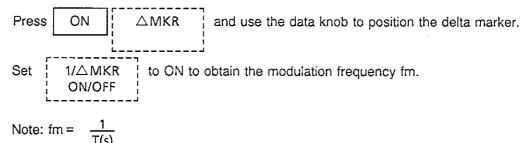
Set the resolution bandwidth to at least three times the modulation frequency.

3 Set the signal peak at the reference level.

Turn ZERO SPAN mode on.

⑤ Adjust the center frequency so that the demodulated signal is at the center of the screen.

Press CENTER FREQ and use the step keys or data knob to position the wave.


Set trigger mode to VIDEO.

② Select a sweep time that allows you to view the demodulated signal easily.

Set the marker at the demodulated wave peak.

Set the delta marker on the adjacent peak.

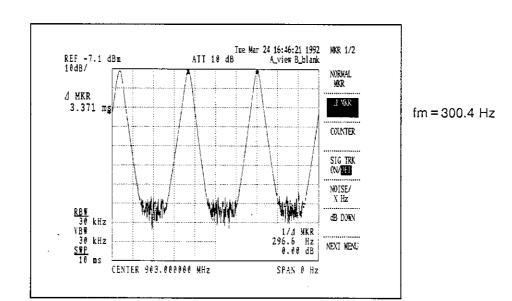
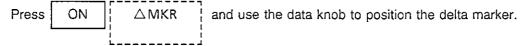


Figure 4-10 FM signal With Low Modulation Frequency

4.3.2 Measuring FM Signals With High Modulation Frequencies and Small Modulation Indexes

Procedure

- ① Set the frequency span to a range between two and ten times the modulation frequency.


 Press FREQ SPAN and use the step keys to set the span.
- Set the carrier frequency to the center frequency.

Press CENTER FREQ and use the data knob to set the center frequency.

3 Set the marker at the carrier peak.

Press Peak

Set the delta marker at the peak of the adjacent side band.

The frequency indication of the delta marker is the modulation frequency fm.

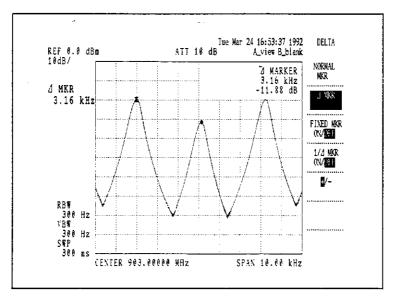


Figure 4-11 FM Signal With High Modulation Frequency and Small Modulation Index

4.3.3 Measuring FM Signal Peak Shifts (△fpeak)

Procedure

① Set the resolution bandwidth high enough to include the main side bands (at least five times greater than the modulation frequency).

Press CPL RBW and use the step key to adjust the resolution bandwidth.

2 Center the carrier frequency.

Press CENTER FREQ and use the data knob to adjust the frequency.

Set the frequency span slightly larger than the peak shift so that measurements can be made easily.

Press FREQ SPAN and use the step keys to adjust the frequency span.

igoplus From the waveform, determine $\Delta f_{\text{peak to peak}}$ and m using the following formulas:

$$\triangle f_{peak} = \frac{1}{2} \triangle f_{peak to peak}$$

$$m = \frac{\triangle f_{peak}}{fm}$$

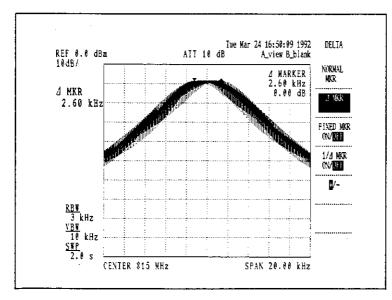


Figure 4-12 FM Signal With Small \triangle f_{peak}

When △f_{peak} is small:
 In this example, △f_{peak} to peak
 = (delta marker frequency)/2
 = 2.26kHz

$$\triangle f_{peak} = \frac{1}{2} \triangle f_{peak to peak} = 1.13kHz$$

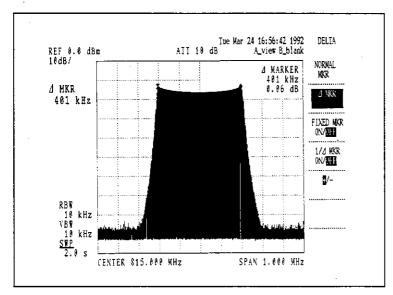


Figure 4-13 FM Signal With Large △ fpeak

When fpeak is large: In this example, fpeak to peak = (delta marker frequency)/2 = 374kHz

$$\triangle f_{peak} = \frac{1}{2} \triangle f_{peak to peak} = 187kHz$$

4.3.4 Measuring Small FM Modulation Indexes

If the FM wave modulation index m is 0.8 or below, the following approximation holds:

 $m = \frac{2E_{SR}}{E_C}$

 E_SB : 1st side band level E_C : Carrier level

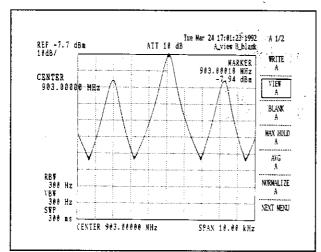
Procedure

① Set the center frequency and the frequency span so that the carrier can be viewed easily, and set the carrier level to the reference level.

CENTER FREQ Press and use the data knob to adjust the center frequency. Press FREQ SPAN and use the step keys to adjust the span. Press **REF LEVEL** and use data knob to set the carrier to the reference level.

- ② Write down the carrier frequency fc (from the center frequency indicator) and the carrier level Ec (from the reference level indicator). (See Figure 4-14.)
- Move the delta marker to the first side band and write down the frequency f_{SB} and level ESR (from the delta marker indicator).

Press Peak ON \triangle MKR and use the data knob to position the delta marker on the first side band. (See Figure 4Calculate the FM modulation index m using the following formula:


$$m = 2 \times \frac{E_{SB}}{E_C} = log^{-1} \frac{E_{SB} - E_C + 6}{20}$$

© Calculate the modulation frequency fm using the following formula or from the delta marker frequency indicator:

$$fm = 1f_{SB} - f_c1$$

© Calculate the frequency shift fpeak using the following formula:

$$\triangle f_{peak} = m \times fm$$

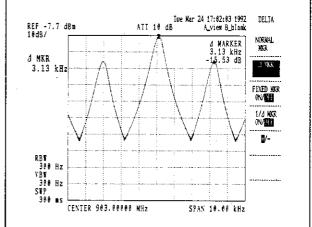


Figure 4-14 FM Signal fc and Ec

Figure 4-15 FM Signal fSB and ESB

4.4 Measuring Pulse-modulated Signals

The spectrum analyzer can analyze pulse-modulated waveforms and display the higher harmonics and dominant wave contained in the waveform. As shown in Figure 4-16 (a) and (b), converting the time-axis view of a pulse-modulated wave into the frequency-axis view gives a spectrum distribution having an envelope centered at the carrier Fc.

The following measurements are commonly made for pulse-modulated radar waves:

- Pulse width (τ)
- Carrier frequency (fc)
- Peak power (Ppeak)
- Average power (Pave)
- Pulse repetition frequency (PRF)

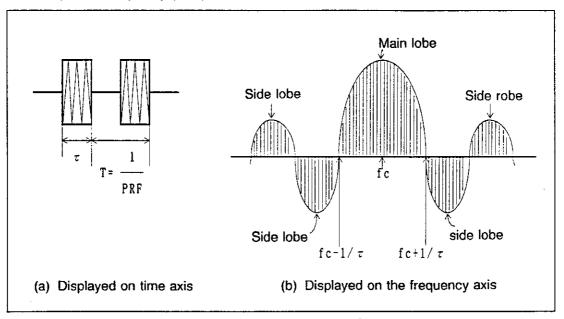


Figure 4-16 Pulse-modulated Signal

CAUTION

- 1. The analyzer's maximum allowable input level is +30 dBm and 0 VDC when the input attenuator is set to 10 dB or above. Use a coupler to attenuate pulse-modulated radar waves that have large peaks before feeding them into the analyzer's input connector.
- Since the analyzer's mixer input level is -10 dBm, set the input attenuator so that
 P_{peak}≤ -10 dBm. To prevent mixer saturation, lower the input attenuator by 10 dB intervals
 starting at 50 dB, and find the minimum attenuator value that does not lower the signal level.

R3265 | 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

4.4 Measuring Pulse-modulated Signals

(1) Pulse width (τ)

The pulse width τ is equal to 2 divided by the width of the main lobe, or the inverse of the width of a side lobe (see Figure 4-16). Set the resolution bandwidth in the range described below.

Pulse repetition frequency (PRF) \times 1.7 \leq Resolution bandwidth \leq 0.1/ τ

(2) Carrier frequency (Fc)

The pulse width τ determines how accurately the carrier frequency (fc) can be measured. If τ is small, the main lobe of the signal spreads out and determining the center becomes difficult. To display the center accurately, set SPAN/DIV wider than 1/ τ . This gives an accuracy equal to the center frequency accuracy at the SPAN/DIV specified.

(3) Peak power (Ppeak)

The indicated amplitude is proportional to the resolution bandwidth if the resolution bandwidth of the spectrum analyzer satisfies the following condition:

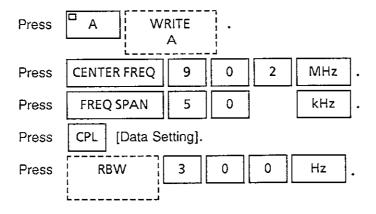
Pulse repetition frequency (PRF) \times 1.7 \leq Resolution bandwidth \leq 0.2/ τ

Under this condition, the relationship between the actual peak power P_{peak} (dBm) and the indicated amplitude P'_{peak} (dBm) can be expressed as follows:

$$P_{peak} = P'_{peak} - \alpha$$
 (dB) α: Pulse attenuation factor α (dB) = 20log ($\tau \times 1.5 \times RBW$)

(4) Average power (Pave)

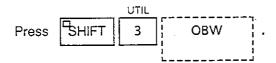
The average power Pave (in dBm) is determined as follows.


$$P_{ave} = P_{peak} \times PRF \times \tau$$
 PRF: Pulse repetition frequency (Hz) τ : Pulse width(s)

4.5 Measuring Occupied Bandwidths (OBW)

The analyzer's OBW feature lets you calculate the occupied bandwidth of trace A for testing communications equipment. You enter a percentage, and the analyzer marks the frequency range that percentage of the signal lies in. The percentage is the ratio of the occupied bandwidth to the entire power spectrum, and can be set from 10.0% to 99.8%. The initial value is 99%.

NOTE


- 1. To reduce calculation errors, adjust the reference level and span so that the signal's amplitude is above 50 dB and the span is about three times the occupied bandwidth.
- 2. To minimize measurement errors, set the analyzer's resolution bandwidth to below 3% of the occupied bandwidth.
- 3. If the signal is noisy (especially if the modulated wave is a false aural signal), set the trace detection mode to SAMPLE to minimize errors.
- (1) Measure the OBW as follows. (This example uses a center frequency of 902 MHz, a frequency span of 50 kHz, and an RBW of 300 Hz.)
 - ① Center the trace A signal. Set the frequency span to three times the occupied bandwidth and set the resolution bandwidth to below 3% of the occupied bandwidth.

② Set the Trace detection mode to SAMPLE.

③ Measure the occupied bandwidth.

When the calculation is complete, the occupied bandwidth and the carrier frequency (Fc) appear at the upper right of the screen, and markers are set at the ends of the occupied bandwidth.

For example, if the ratio is 99.0%, the markers are set at 0.5% and 99.5% of the entire displayed power spectrum.

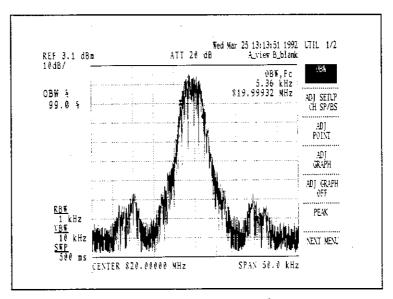
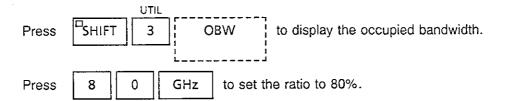



Figure 4-17 Measuring the OBW

④ If needed, change the OBW-to-power-spectrum ratio using the numeric keypad. For example, you would change this ratio to 80% as follows:

(2) How the Analyzer Calculates the Occupied Bandwidth

The data on the analyzer screen consists of 701 points plotted along the frequency axis. If the voltage of a point n is Vn, then the total power P of the portion of the signal represented by all points is:

$$P[W] = \sum_{n=1}^{701} \frac{Vn^2}{R}$$
 (R: Input impedance)

The following expression is satisfied if the sum of the powers over the interval from the screen left end to the Xth point is 0.5% of the total power P:

$$0.005P = \sum_{n=1}^{X} \frac{Vn^2}{R}$$
 (When the ratio is 99.0%)

The following expression is satisfied if the sum of the powers over the interval from the screen left end to the Yth point is 99.5% of the total power P:

$$0.995P = \sum_{n=1}^{Y} \frac{Vn^2}{R}$$
 (When the ratio is 99.0%)

Since the occupied bandwidth is the portion of the band from .005P to .995P, the analyzer finds the occupied bandwidth by solving the above two equations for X and Y, and substituting these values in the following expression:

OBW [Hz] =
$$\frac{f_{SPAN}(Y-X)}{701}$$
 (F_{SPAN}: Frequency span)

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

4.6 Measuring Adjacent Channel Leak Power (ADJ)

4.6 Measuring Adjacent Channel Leak Power (ADJ)

The analyzer's adjacent channel leak power feature lets you calculate how much a signal in one communications channel leaks into adjacent channels. To measure the adjacent channel leak power, the analyzer determines the total power over a specified bandwidth and calculates the ratio of the power in each channel to the total signal power.

The analyzer provides two types of leak power: measurements:

ADJ POINT and ADJ GRAPH

ADJ POINT

Measures the leak power of the upper and lower channels. (You specify the

channel spacing.)

ADJ GRAPH :

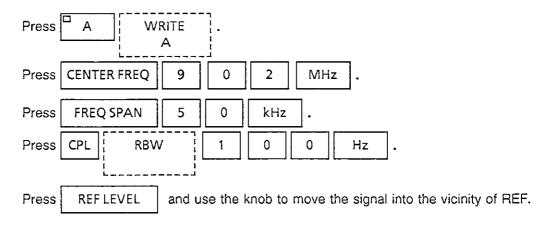
Measures the leak power of all channels in the bandwidth specified and

displays the result as a graph.

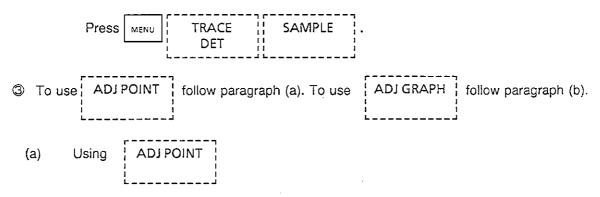
NOTE

1. The analyzer's dynamic range is lowered if the signal level is much lower than the reference level.

Use a span four or five times the channel spacing of the radio.

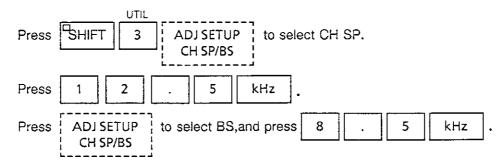

- 2. To minimize measurement error, set the analyzer's bandwidth to less than 1/40th of the specified bandwidth.
- 3. If the signal is noisy (especially if the modulated wave is a false aural signal), set the Trace detection mode to SAMPLE to minimize the error.
- (1) Measure the leak power as follows. (This example uses a center frequency of 902 MHz, a frequency span of 50 kHz, and an RBW of 100 Hz.)

4-23 Feb 28/92


R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

4.6 Measuring Adjacent Channel Leak Power (ADJ)

① Center the trace A signal and specify the frequency span and resolution bandwidth values .


2 Set the Trace detection mode to SAMPLE.

(a-1) Set the marker to the frequency of the specified channel.

Press	MARKER	ON	9	0	2	MHz	.
		1	1 1	1 1			

(a-2) Select the adjacent channel leak power mode and set the specified bandwidth and channel spacing.

(a-3) Measure the adjacent channel leak power.

Press ADJ POINT

The marker indicates the point of the specified channel frequency ± channel spacing. The power ratio of the upper adjacent channel against the lower adjacent channel is displayed in the upper right corner of the screen.

This calculation repeats every time

ADJ is pressed.

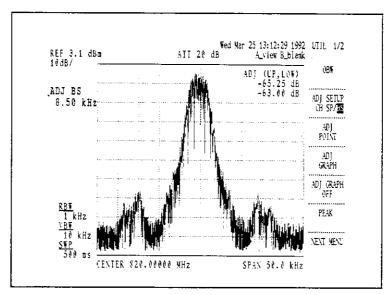
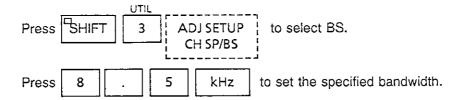
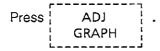


Figure 4-18 Measuring the Adjacent Channel Leak Power (ADJ POINT)

NOTE

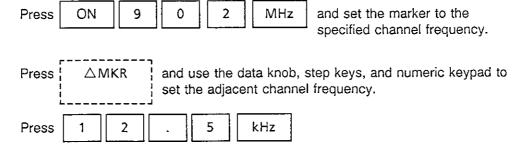

- 1. Before using ADJ POINT, set the marker to the frequency of the specified channel as described in step (a-2). This function will not operate if the channel spacing and the specified bandwidth are not set or are set incorrectly.
- 2. After measurement, the marker function automatically enters delta marker mode. Before taking a measurement, remember to set the marker to the specified channel frequency.

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL


4.6 Measuring Adjacent Channel Leak Power (ADJ)

(b) Using	ADJ GRAPH
-----------	--------------

(b-1) Select adjacent channel leak power mode and set to specified bandwidth (BS).



(b-2) Measure the adjacent channel leak power.

The result is displayed on screen B. The result is displayed every time the key is pressed.

(b-3) Use the delta marker to measure the adjacent channel leak power with the channel spacing displayed.

The adjacent channel leak power ratio is displayed in the upper right corner of the screen.

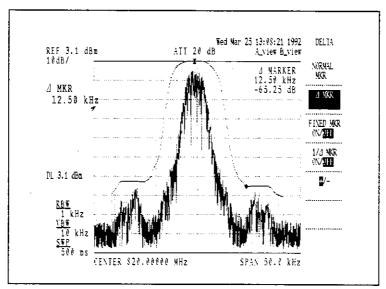


Figure 4-19 Measuring the Adjacent Channel Leak Power (ADJ GRAPH)

NOTE

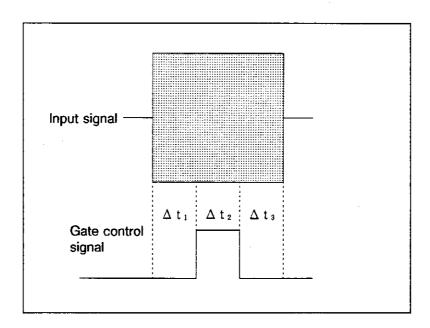
This function will not operate if the bandwidth is not set or is set incorrectly.

(2) How the Analyzer Calculates the Adjacent Channel Leak Power

The data on the analyzer screen consists of 701 points plotted along the frequency axis. If the power of point n is Pn, then the total power P of the portion of the signal represented by all points is:

If $\triangle X$ is assumed to be the specified bandwidth (BS), the adjacent channel leak power at the nth point from the left end of the screen is determined by:

$$P_{ADJ} [db] = 10 log_{10} \begin{cases} n + \frac{\triangle x}{2} \\ \sum_{n - \frac{\triangle x}{2}} Pn \\ \frac{n - \frac{\triangle x}{2}}{P} \end{cases}$$


$$(n - \frac{\triangle x}{2}) \ge \text{Start frequency and } n + \frac{\triangle x}{2} \le \text{Stop frequency})$$

4.7 Analyzing Burst Signal Spectra

You can analyze burst signal spectra using the analyzer's gated sweep function. Burst signal measurements are often necessary when working with magnetic tape equipment such as VTR, 8mm video, and digital audio tape (DAT) equipment.

To analyze a burst signal spectrum, use the gated sweep control terminal (the GATE IN terminal on the analyzer's rear panel) for gate control. The sweep starts at the TTL level "High" (or Open) and stops at "Low".

Set the input signal and the gate control signal as specified below.

	RBW							
	3 MHz, 1 MHz	300 kHz	100 kHz	30 kHz	10 kHz			
∆t ₁	$2 \mu s$ $15 \mu s$ $20 \mu s$ $50 \mu s$ $180 \mu s$ or more or more or more or more							
\triangle t ₂	1 μs or more							
∆t ₃	1 μs or more							

Note: When measuring noise, set the detection mode to SAMPLE.

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

4.8 Measuring with Tracking Generator (R3365/3371 only)

4.8 Measuring with Tracking Generator (R3365/3371 only)

The operation for amplitude-frequency characteristic measurement and amplitude linearity measurement, using a tracking generator, is explained as follows with actual measurement examples.

4.8.1 Examples of Amplitude-frequency Characteristic Measurement

(1) The Operating Procedu	(1)	(1)	The	Operating	Procedure
---------------------------	-----	-----	-----	-----------	-----------

W	furn the tracking generator ON, and enter the output level.	

Press	TG	MAG		OUTPUT LEVEL		and use the numeric keypad, step keys
-------	----	-----	--	-----------------	--	---------------------------------------

or data knob to set the output level. (enable by 0.1 dB step)

② Enter the center frequency, frequency span and reference level.

Press CENTER FREQ and enter the center frequency with the numeric keypad, step keys or data knob.

Press FREQ SPAN and enter the center frequency with the numeric keypad, step keys or data knob.

Press REF LEVEL and enter the reference level with the numeric keypad, step keys or data knob.

	NOTE
In resolution bar	ndwidth≤100KHz, the tracking generator should be operated after pressing the
FREQ CAL	to compensate tracking error(level error caused by differences between the output
frequency of the	e tracking generator and tuning frequency of spectrum analyzer).

4-29

Set up the test cables and feedthrough adapter as shown below in Figure 4-20. The through frequency characteristics are displayed on the screen.

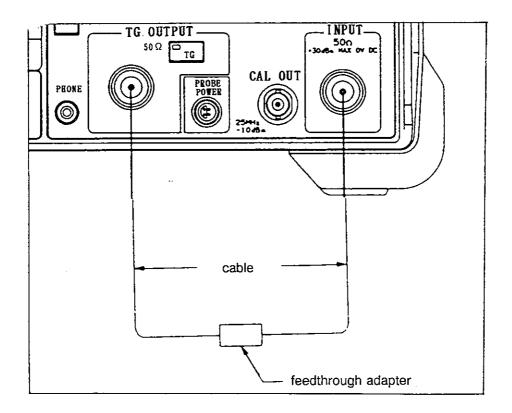


Figure 4-20 Connecting with Through State

4-30

- If an error caused by the freguency response of cables spectrum analyer etc, is not regligible, then you should compensate it as is described in step (2) later on.
- ⑤ Set up the DUT and test cable as shown in Figure 4-21.

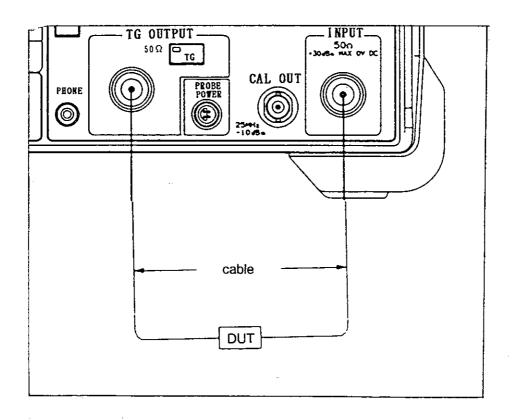


Figure 4-21 Connecting with DUT

- CAUTION -

When the Input and output impedances of the DUT are other than 50Ω , make sure to match the impedance of the DUT.

(2) How to compensate the frequency characteristic based on display line.

This procedure shows how to compensate the frequency characteristics of the analyzer and the frequency characteristics of the measurement cables.

- CAUTION -

- 1. IF you change the function data (center frequency, frequency span, and reference level etc.), which has edited the normalization reference then the normalizatation may not operate correctly.
 - In this case, execute the normalization from the start.
- 2. This operation does not compensate the electric wave leugth of cable phase-delay etc.
 - ① Select the trace A mode (or B mode).

Press A (or B)

② Set up the test cables and feedthrough adapter as shown below (Figure 4-22)

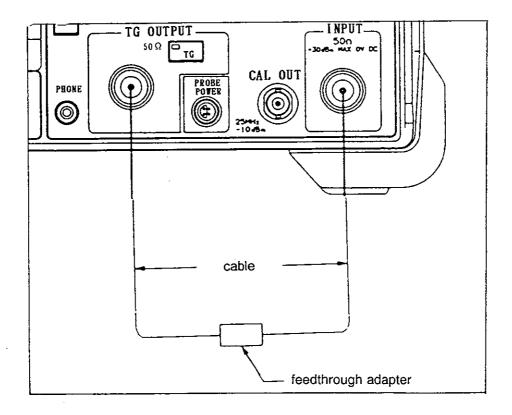


Figure 4-22 Connecting with Through State

4.8 Measuring with Tracking Generator (R3365/3371 only)

3 Make sure of the position of the trace on the display, and adjust that position to the suitable grid area as is shown below in Figure 4-23.

Press the REF LEVEL and use the step keys or data knob to adjust the values.

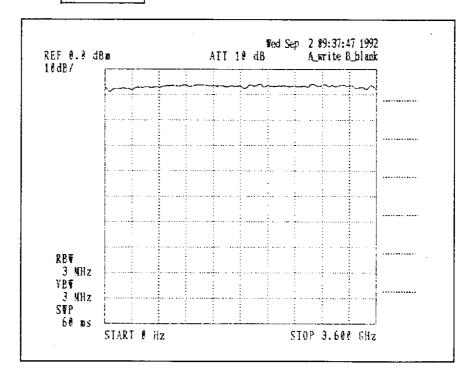
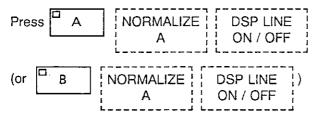



Figure 4-23 Trace of the feedthrough characteristic

Display the display-line on the screen and move it near the trace.
 The analyzer can operate on a wide dynamic range when the display line is close to trace.

and use the step keys or data knob to adjust the display line.

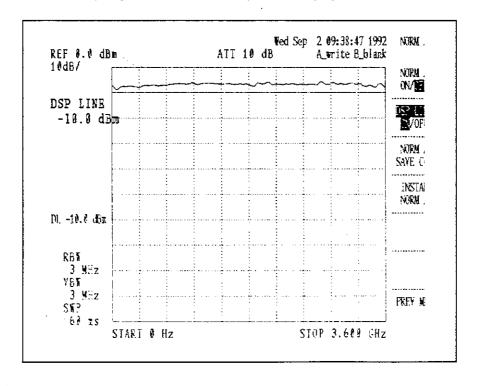
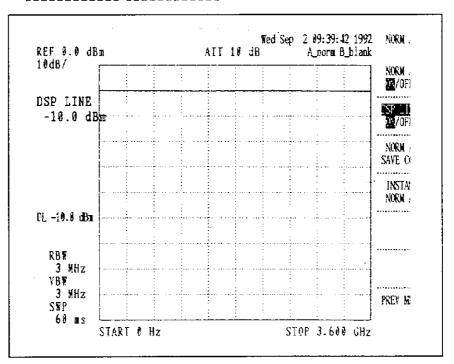



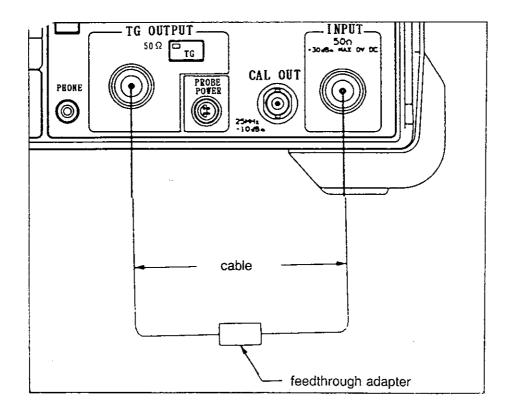
Figure 4-24 Display the Display-line and the Trace

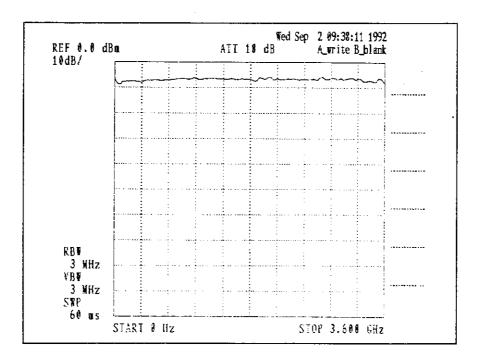
© Compensate the frequency characteristics.

Press NORM A NORM A . SAVE CORR ON OFF

- © Press NORM A to cancel the compensation mode.
- (3) How to compensate the frequency characteristics using the "Through correction" function.

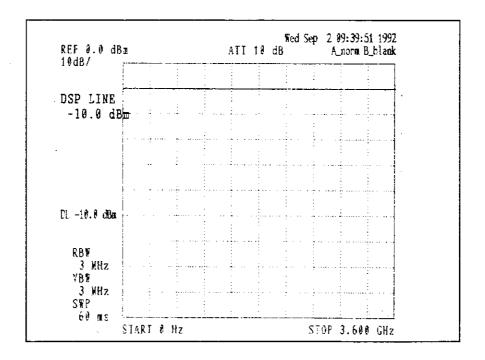
This function compensates the frequency characteristics using tracking generator on 38 point in frequency range of 3.6 GHz. The compensation is available, If you edit the data such as center frequency, frequency span and reference level.


NOTE


- 1. This compensation is not preferable to compensate the rough frequency characteristics. Therefore, compensate the frequency characteristics based on the display line.
- 2. This compensation does not compensate the electric wavelength of cable phase-delay etc.

4.8 Measuring with Tracking Generator (R3365/3371 only)

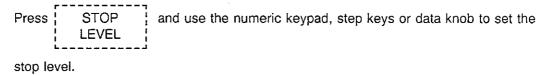
① Press TG THROUGH CORRECT


Set up the test calles and feedthrough adapter as shown in the figure below.

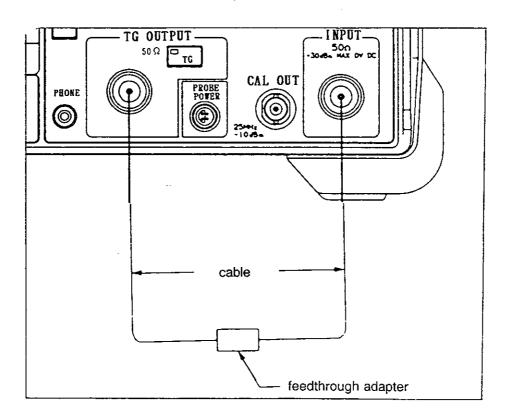
4.8 Measuring with Tracking Generator (R3365/3371 only)

③ Press THRU CORR to compensate the frequency characteristics.

Press THRU CORR to cancel the compensation mode.

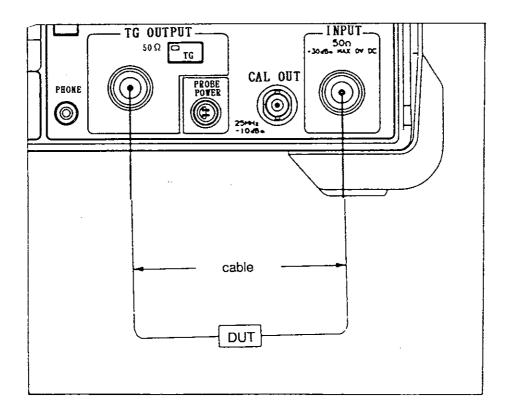

4.8.2 Examples of Amplitude-Linearity Characteristics Measurement

- (1) The Operating Procedure
 - ① Turn the tracking generator ON to enter specify the output-level and sweep-time.


Press TG POWER START and use the numeric keypad, step keys SWEEP LEVEL

or data knob to set the output level. (enable by 0.1 dB step)

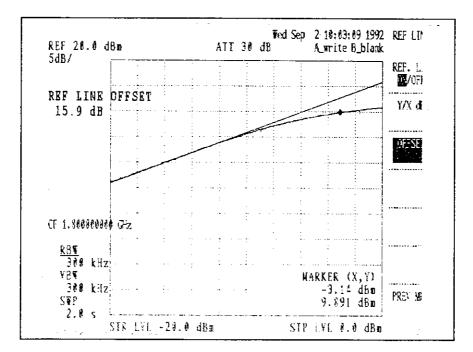
Set the stop level in the same way.


Set up the test cables and feedthrough adapter as shown in the figure below. The display will show the thrugh linearity (without DUT).

If an error caused by the output level linearity is not negligible, you should compensate it as described in step (3) (later on).

4.8 Measuring with Tracking Generator (R3365/3371 only)

Start the measurement.

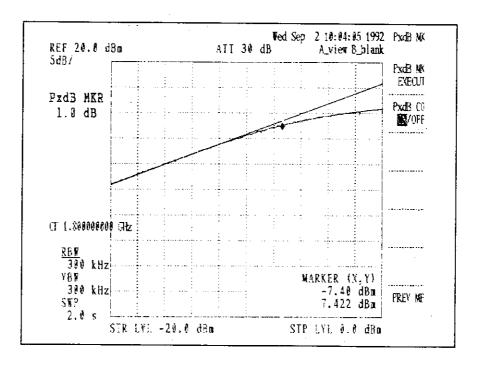

(2) How to use the gain-compression display-function and reference line

The gain-compressin display-function which is an exclusive function for power sweep mode is explained as follows.

① Press TG POWER REF.LINE REF.LINE and turn the reference line ON.

4.8 Measuring with Tracking Generator (R3365/3371 only)

Press XY dB and use the numeric keypad, step keys or data knob to set the slope of the reference line.

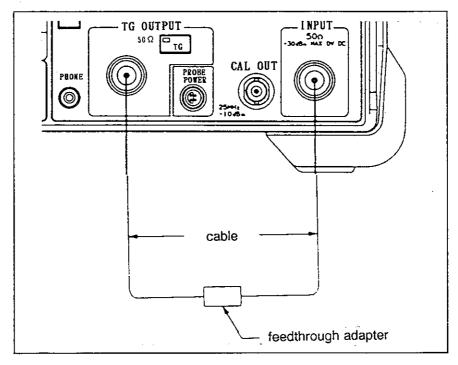


③ Press OFFSET and use the numeric keypad, step keys or data knob to set the

offset value of the reference line (enable by 0.1 dB step).

Press TG POWER PxdB MKR and use the numeric keypad, step keys or SWEEP

data knob to set the compression level (enable by 0.1 dB step). The gain-compression is displayed on the screen.


(3) How to compensate the linearity characteristics

The procedure on how to compensate the linearity of the spectrum analyzer using the power linearity calibration function is described as follows.

NOTE

If you change the function data (center frequency and reference level etc.), the calibration may not operate correctly. In this case, execute the calibration again from the start.

① Set up the test cables and feedthrough adapter.

4.8 Measuring with Tracking Generator (R3365/3371 only)

4.8.3 Caution on Operations of Tracking Generator

(1) Dynamic Range

- The dynamic range to be measured is restricted by the maxmum. output level of the TG section and the noise floor of the receive rsection. As the 'RBW absolution range width' and the 'noise floor of the receiver section' are decreased, so the dynamic range will increase.
 - However if the RBW in raised to its maxmum and the local signal transmittion of the TG section to the receiver section is leaking, then sometimes the noise level will not fall and the dynamic range will not be extended.
- ② If the transmition loss of DUT (including loss by the missmatching circuit) is lange, the measurement dynamic range will be decreased in proportion to further loss. This problem can be solved by inputting to or outputting from the DUT with an amplifier.
- The position of the amplifier (input or output) is selected according to the DUT conditions. The characteristics of the amplifier (gain, flatness, noise exponent, output level at 1 dB pressure point, input/output VSWR) should be known in advance.
- ④ Make sure the output level of the tracking generator is not too much. If so decrease it.

(2) Time Response

- ① On CRT display, the UNCAL message which indicates whether the level is correct or not is displayed. When measuring frequency characteristics with this device, this display is ignored.

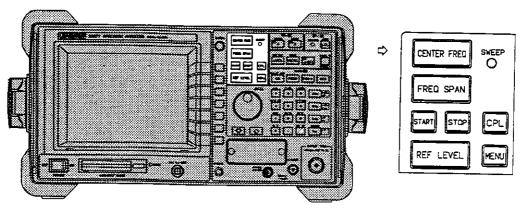
 This message shows whether IF filter correctly indicates the level for sufficient response to time by the combination of settings for FREQ SPAN, SWP and RBW.
- When the signal level which is provided from the measuring device output edge to the main body of the spectrum analyzer changes a bit the display is correct in some cases regardless of the UNCAL message.
- When the signal level which is provided from the measuring device output edge to the main body of spectrum analyzer changes alot suddenly, care is taken for the time response of the measured device since this IF filter can not be received.
- In this time response, when the characteristics displayed on the screen not changed by the switch of SWP, this IF filter and the measured device are sufficiently respondeding. If it is changed by the switch of SWP, SWP should be delayed and the Span (frequency sweep width) should be decreased until the characteristics on the screen donot change.

4-43

4.8 Measuring with Tracking Generator (R3365/3371 only)

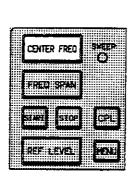
(3) Prevention of over voltage applying to TG OUTPUT connector

The voltage of \pm 10V or more and electric power of \pm 15dBm or more should not be applied. (The TG may be damaged.)


5. KEY FUNCTIONS

5. KEY FUNCTIONS

This chapter explains how to use each of the analyzer's keys. As you read this chapter, try using the various functions described (use the 25 MHz calibration signal on the front panel as a convenient signal source). Appendix 3 lists the analyzer's menus and shows how to access them.


5.1 Basic Key Functions

The basic key section on the front panel contains the center frequency, frequency span, start and stop frequency, coupling, reference, and menu keys.

5.1.1 Center Frequency

The CENTER FREQ key, used with the SPAN key, sets the frequency range the instrument will measure. You can also use the START and STOP keys to accomplish the same task.

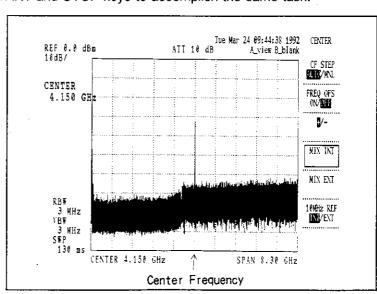
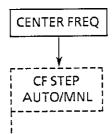



Figure 5.1-1 Center Frequency

Table 5.1-1 Center Frequency Display Resolution

Center Frequency Display Resolution		
1 MHz	(Span ≥ 1000 MHz)	
100 kHz	(1000 MHz>Span≥100 MHz)	
10 kHz	(100 MHz>Span≥10 MHz)	
1 kHz	(10 MHz>Span≥1 MHz)	
100 Hz	(1 MHz > Span ≥ 100 kHz)	
10 Hz	(100 kHz>Span≥10 kHz)	
1 Hz	(10 kHz>Span≥200 Hz)	
1 Hz	(Span = 0 Hz)	

(1) Center Frequency Menu

Use this softkey to set the step feature to automatic or manual. The step feature lets you conveniently step through the frequency range while maintaining a constant span. The step size is the amount by which the center frequency shifts when you press the step keys or rotate the knob. Select MNL (manual) to set the center frequency step size (the screen shows the current step size). Select AUTO to use a step size of 1/10 of the span setting.

Use this softkey to turn the frequency offset ON or OFF. You can use this feature to make relative frequency measurements. Select ON to set an offset frequency in the range from 0 to $\pm 100,000$ MHz. If the setting is smaller than the display resolution, the value of the display resolution is used instead.

Center Frequency (Display) = Center Frequency (Specified) + OFFSET

Select OFF to cancel the offset.

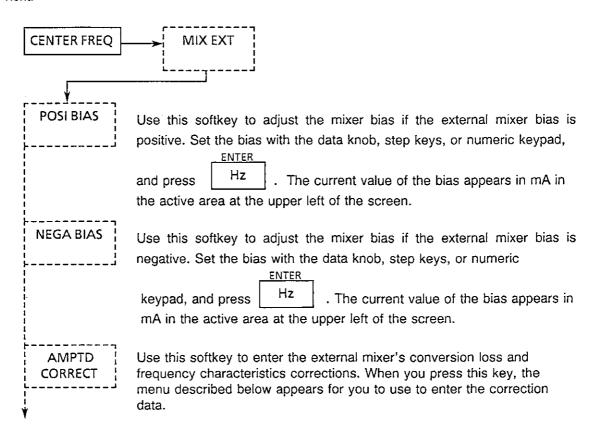
+/MIX INT

MIX EXT

Use this softkey to select the sign of the offset frequency.

Press this softkey to operate the analyzer using its internal mixer.

Press this softkey when using an external mixer to drive the analyzer. (You can set the center frequency in the range from 12.4 GHz to 325 GHz when using an external mixer.) The condition setting menu described below appears when you press this key.



Use this softkey to select the frequency reference the analyzer will use. Select INT to use the analyzer's internal frequency reference. This reference has an accuracy of $\pm 2 \times 10^{-8}$ /day and $\pm 1 \times 10^{-7}$ /year. Select EXT to use an external frequency reference connected to the 10MHz REF IN/OUT terminal on the rear panel. The accuracy of the external reference determines the accuracy of the analyzer. The accuracy of the external reference should be $\pm 5 \times 10^{-6}$ /day, and the output level should be within the range -5 dBm to +5 dBm.

CAUTION

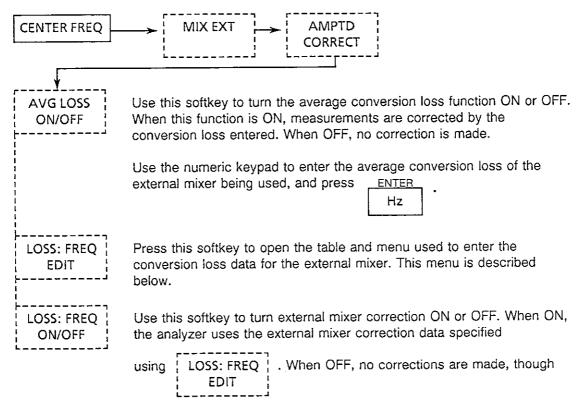
- 1. When using the analyzer's internal frequency reference, remove the external reference source from the rear panel terminal, or spurious signals will be generated.
- 2. When using an external frequency reference, be sure to connect the reference source.
- (2) Setting the External Mixer Conditions (This operation cannot be used in the R3265.)

Using an external mixer lets you increase the frequency range of the analyzer up to 325 GHz. To use an external mixer, set the mixer conditions and enter mixer correction data as described next.

BAND SELECT Use this softkey to set the frequency bandwidth of the external mixer being used. Table 5.1-2 shows allowable frequency bandwidths.

After you press the softkey, use the data knob, step keys, or numeric keypad to select the bandwidth. When using the numeric keypad, specify a band number from Table 5.1-2. The band number and the mixing degree (N) appear in the active area in the upper left portion of the screen, and the start and stop frequency automatically adjust to the new frequency range.

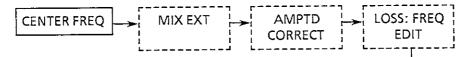
Table 5.1-2 Allowable External Mixer Frequency Bandwidths


Band No.	Frequency Range (GHz)	Mixing Degree (N)
1	12.4 to 18.0	3
2	17.0 to 26.5	4
3	22.0 to 33.0	5
4	26.5 to 40.0	6
5	33.0 to 50.0	8
6	40.0 to 60.0	8
7	50.0 to 75.0	10
8	60.0 to 90.0	12
9	75.0 to 110.0	14
10	90.0 to 140.0	18
11	110.0 to 170.0	22
12	140.0 to 220.0	28
13	170.0 to 260.0	34
14	220.0 to 325.0	42

BAND LOCK ON/OFF Use this softkey to turn the BAND LOCK ON or OFF. When BAND LOCK is ON, you can set the center frequency and the start/stop frequencies only within the frequency range specified using the BAND SELECT softkey described above.

When BAND LOCK is OFF, the bandwidth automatically changes to one of the frequency ranges shown in Table 5.1-2; the exact range depends on the center frequency and start/stop frequency entered.

SIGNAL ID ON/OFF Use this softkey to turn SIGNAL ID ON or OFF. Using an external mixer bypasses the analyzer's preselector, which can cause spurious multiple spectra to appear. The SIGNAL ID function helps you identify the real signal from these false signals. When you turn on SIGNAL ID, the false signals shift their position while the real signal remains stable. When SIGNAL ID is ON, you cannot modify the spectrum display position.


(3) Selecting the External Mixer Correction

the correction data remains in memory.

(4) Entering the External Mixer Correction Data

The external mixer correction data compensates for variations in different mixers. The data remains in memory until deleted. To enter the data, press the following keys in the sequence shown:

The following window appears for entering the correction data. Use the data knob and step keys to scroll through the data.

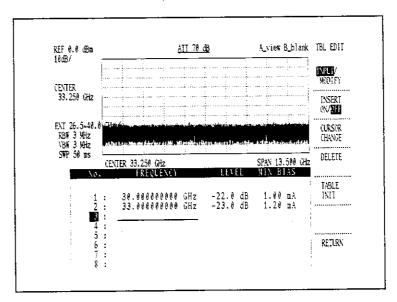
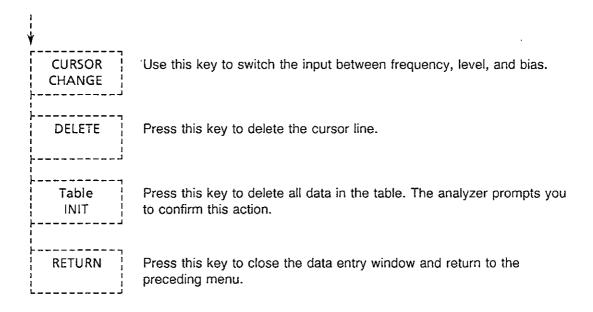
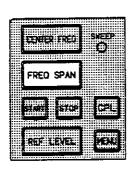


Figure 5.1-2 Entering the External Mixer Correction Data

INPUT/ MODIFY


Use this softkey to input or modify the underlined item in the correction data table.

When you select INPUT, you can enter the frequency, level, and bias current (in that order) to define each data point. The data entered is sorted in ascending order.


When you select MODIFY, you can modify the existing data. The modified data is also sorted in ascending order.

INSERT | ON/OFF

Set this softkey to ON to insert an empty line for data entry.

5.1.2 Frequency Span

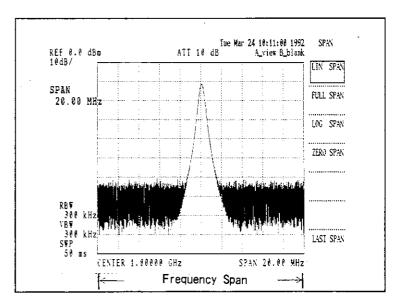


Figure 5.1-3 Frequency Span

FREQ SPAN

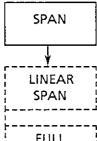
Press this key to set the span and open the menu shown below. The analyzer's display resolution depends on the span, as shown in the following table. The screen shows the current setting.

NOTE

Certain settings cannot be modified if the span is set to LOG.

5.1 Basic Key Functions

(1) Frequency Span Display Resolution


Table 5.1-3 Frequency Span Display Resolution

Frequency Span Display Resolution			
10 MHz		(Span > 4000 MHz)	
1 MHz		(4000 MHz ≥ Span > 400 MHz)	
100 kHz		(400.0MHz ≥ Span > 40.1 MHz)	
10 kHz		(40.00MHz ≥ Span > 2.01 MHz)	
1 kHz		(2.000MHz ≥ Span > 401 kHz)	
100 Hz		(400.0kHz ≥ Span > 20.0 kHz)	
10 Hz		(20.0kHz ≥ Span > 2.00 kHz)	
		(2.000kHz ≥ Span)	

5-9

(2) Span Menu

Use the span menu to set the analyzer's frequency span. Access the menu by pressing the SPAN key.

Press this softkey to use a linear frequency span scale.

FULL SPAN

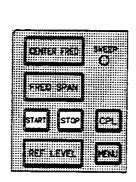
Press this softkey to set the full span of the analyzer. For the R3265, this sets the center frequency to 4.15 GHz and the span to 8.3 GHz. For the R3271, this sets the center frequency to 13.25 GHz and the span to 26.5 GHz.

LOG SPAN

Press this softkey to use a logarithmic frequency span scale. You must then specify the start and the stop frequencies in the combinations shown below by pressing the START and STOP keys.

Start Frequency	Stop Frequency
1 kHz	10 kHz
	100 kHz
	1 MHz
10 kHz	100 kHz
	1 MHz
	10 MHz
100 kHz	1 MHz
	10 MHz
	100 MHz
1 MHz	10 MHz
	100 MHz
	1000 MHz
10 MHz	100 MHz
	1000 MHz
100 MHz	1000 MHz

ZERO SPAN


Press this softkey to set the analyzer to zero span mode. In this mode, the analyzer operates as a receiver fixed at the center frequency, and modulation can be measured in the time domain. (The sweep time determines the time window.) This setting is useful for measuring AM and FM signals with low modulation frequencies (see Chapter 4).

LAST SPAN

Press this softkey to set the frequency span to the previous value. This feature is useful when an incorrect span has been specified, or for alternating between two spans.

5.1.3 Start and Stop Frequency

The START and STOP keys set the analyzer's measurement range. You can use them as an alternative to using the CENTER FREQ and SPAN keys.

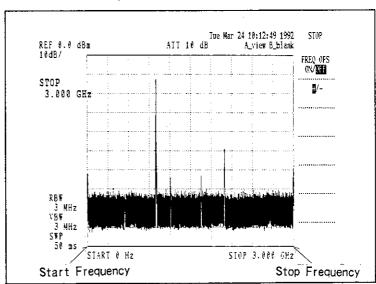


Figure 5.1-4 Start and Stop Frequency

START

Use this key to set the start frequency. This frequency can be from 0 Hz to 8GHz for the R3265, or 0 Hz to 26.5 GHz for the R3271. The preset value is 0 Hz for both the R3265 and R3271.

Use this key to set the stop frequency. This frequency can be from 0 Hz to 8GHz for the R3265 or 0 Hz to 26.5 GHz for the R3271. The preset value is 8GHz for the R3265 or and 26.5 GHz for the R3271.

NOTE

In log span mode, the start and stop frequencies can only have the discrete values listed under the LOG SPAN description above. If you enter another value, the setting jumps to the nearest discrete value.

FREQ OFS ON/OFF Use this softkey to apply a frequency offset to the start and stop frequencies. Select ON to set an offset frequency in the range from 0 to \pm 100,000 MHz. If the setting is smaller than the display resolution, the value of the display resolution is used instead.

Start (or Stop) frequency (display)
= Start (or Stop) frequency (specified) + Offset

Select OFF to cancel the offset.

+/-

Use this softkey to select the sign of the offset frequency setting.

5.1.4 Reference Level

The reference level setting determines the vertical scale the analyzer uses.

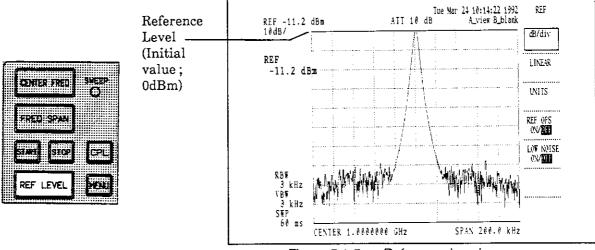


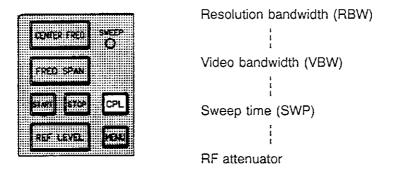
Figure 5.1-5 Reference Level

REF LEVEL

Use this key to set the upper level of the vertical scale to a value in the range from -149.9 dBm to +60 dBm.

NOTE

		ut attenuator is set by be narrowed.	to MANUAL or MIN ATT, the reference level setting
¥	x dB/div	Use this softkey to set the amplitude scale to a value in the range 10 dB/div to 0.1 dB/div.	
	LINEAR	those shown I which can cau	ey to select a linear vertical scale (measured in volts) from pelow. The reference level setting also changes to volts, use rounding errors. Choose one of the following scales, ely zoom in on the peak of a signal as the multiplier
		×1	The vertical scale is from 0 V to the reference level, with (REF level/10) volts per division.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·	×2	The vertical scale is from half the reference level to the reference level, with (REF level/20) volts per division.
		×5	The vertical scale is from four-fifths the reference level to the reference level, with (REF level/50) volts per division.
1		×10	The vertical scale is from nine-tenths the reference level to the reference level, with (REF level/100) volts per division.


! 1 ₩			
UNITS	·	Use this softkey to select the units for the reference level, display line, and markers from the following menu:	
	1 1	Conversion Factor:	
1	dBm		
	dBmV	dBm + 47dB	
	 dBμV	dBm + 107dB	
1 	dB _μ Vemf	dBm + 113dB	
 	dBpW	dBm + 90dB	
1 1 1 1	VOLTS		
! ! !	WATTS	10 dBm 10 mW	
REF OFS ON/OFF	Use this softkey to set the reference offset to a value within the range from 0 to ±100.0 dB.		
	Reference level (display) = Reference level (specified) + Offset		
LOW NOISE ON/OFF	Use this softkey to turn the low noise function ON or OFF. Select ON to increase the sensitivity of the analyzer by about 5 dB in the band from 0 to 3.6 GHz. Select OFF to cancel the function.		

NOTE

- 1. The R3271 does not use the low noise function.
- 2. Set LOW NOISE to OFF when measuring distortion (otherwise the analyzer's tertiary modulation distortion or 1 dB gain compression deteriorates).

5.1.5 Coupling Functions

The coupling functions control the input section of the analyzer. They include the resolution bandwidth, video bandwidth, sweep time, and RF attenuator. Each of these functions can operate manually or automatically.

(1) Resolution Bandwidth

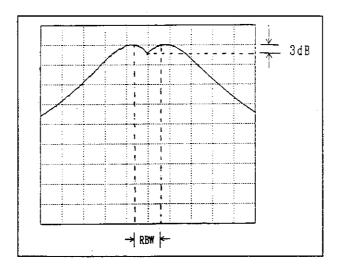
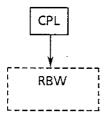
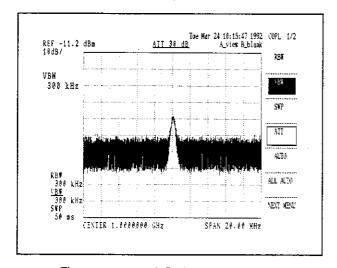



Figure 5.1-6 RBW: The Maximum IF Bandwidth That Can be Separated as Two Signals

The resolution bandwidth (RBW) is the analyzer's IF filter bandwidth. As the RBW is narrowed, spectrum peaks become slender and the resolution increases. This enables you to separate noise from the spectrum being measured, and to separate one spectrum peak from another. However, as resolution improves, measurement time increases.

If the sweep time becomes too short, measurements become less accurate and the message UNCAL appears on the analyzer's screen. To avoid this, increase the sweep time as you decrease the RBW. For lower RBWs, the analyzer uses a digital IF (see the DIGITAL IF softkey description below).



Use this softkey to set the RBW within the range from 10 Hz to 3 MHz. The initial value is AUTO, which automatically sets the optimal RBW depending on the Frequency span, as shown in Table 5.1-4.

Table 5.1-4 RBW Automatically Selected

Frequency span	RBW
Span ≥ 200 MHz	3 MHz
200 MHz > Span ≥ 60 MHz	1 MHz
60 MHz > Span ≥ 20 MHz	300 kHz
20 MHz > Span ≥ 6 MHz	100 kHz
6 MHz > Span ≥ 2 MHz	30 kHz
2 MHz > Span ≥ 300 kHz	10 kHz
300 kHz > Span ≥ 100 kHz	3 kHz
100 kHz > Span ≥ 30 kHz	1 kHz
30 kHz > Span ≥ 10 kHz	300 Hz
10 kHz > Span ≥ 5 kHz	100 Hz
5 kHz > Span ≥ 1 kHz	30 Hz
1 kHz > Span	10 Hz

(2) Video Bandwidth (VBW)

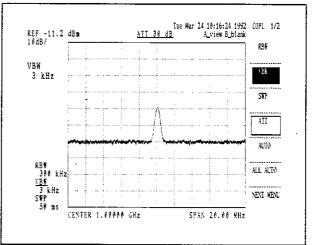
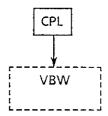
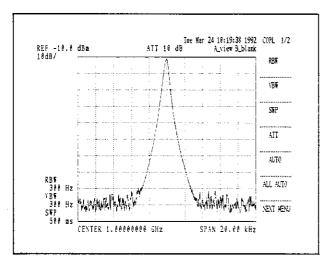



Figure 5.1-7 VBW = 300kHz

Figure 5.1-8 VBW = 3kHz


The video bandwidth feature enables you to detect a signal buried in noise. It uses a noise averaging process that requires inserting a low pass filter into the detected signal. This improves the signal to noise ratio by about 10 dB. To increase the efficiency of the averaging, set the VBW to 1/10 of the RBW or below.

If the VBW is set too narrowly, the signal level is lowered due to the time constant of the low pass filter, and the message UNCAL may appear. If this happens, increase the sweep time.

Use this softkey to set the VBW within the range from 1 Hz to 3 MHz. The preset value is AUTO, which sets the VBW equal to the RBW.

(3) Sweep Time (SWP)

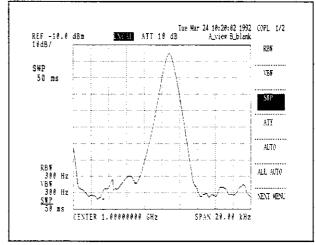
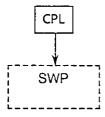
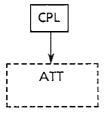



Figure 5.1-9 SWP = AUTO (500ms)

Figure 5.1-10 SWP = 50ms

If the sweep is set too fast for the signal to be displayed, the UNCAL error message appears on the analyzer's screen. If this happens, increase the sweep time. Other sweep functions are available under the MENU key sweep mode menu.


Use this softkey to set the sweep within the range from 20 ms to 1000 ms. The initial value is AUTO, which automatically selects a sweep that depends on the frequency span, RBW, and VBW, so that no level error occurs. If Span = 0 Hz (zero span mode), the setting range is 50 μ s to 1000 s.

The SWP AUTO value, the frequency span, the RBW, and the VBW are related as follows:

Frequency span/[RBW * MIN (RBW,VBW) * 0.5] = SWP

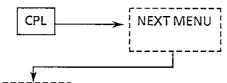
(4) Input Attenuator (ATT)

The attenuator lowers the input signal amplitude to prevent damage to the input block, to facilitate easy observation, and to prevent distortion.

Use this softkey to set the ATT within the range from 0 to 70 dB.


However, if MIN ATT is ON, ATT cannot be set below MIN

ATT.


The preset value is AUTO (10dB), and the optimal ATT value is automatically set according to the reference level.

(5) AUTO Selection

The coupling functions can be individually set to auto mode so that the analyzer automatically chooses an optimal setting for the function.

(6) Next Menu

MIN ATT ON/OFF

Use this softkey to set the minimum value for the input attenuator auto mode.

If this function is OFF, the minimum value is set to 10dB.

Use this function to protect the analyzer's input section and to prevent errors in level measurements and distortion measurements. For example:

- For level measurements, set the MIN ATT so that the mixer input level will be -10 dBm or below.
 (MIN ATT ≥ Signal level + 10 dB)
- For distortion measurements, set MIN ATT as follows: for 0 to 3.6 GHz: MIN ATT ≥ Signal level + 30 dB for >3.6 GHz: MIN ATT ≥ Signal level + 10 dB

RBW:SPAN ON/OFF Use this softkey to set the ratio of the resolution bandwidth to the span to a value from 0.1 to 0.001. (The preset value is 0.01.)

When this function is ON and the RBW is set to AUTO, the RBW is automatically determined from the span using this ratio.

VBW:RBW ON/OFF

Use this softkey to set the ratio of the VBW to the RBW. When this is ON and the VBW is set to AUTO, the VBW is automatically determined from the RBW using this ratio.

The allowed values are .003:1 to 3:1 in increments of 1 and 3. The preset value is 1.

DIGITAL IF 1/2/OFF Use this softkey to set the digital IF function. This function improves low frequency accuracy by automatically switching the analyzer to a digital IF section when the span and RBW settings are low. The digital IF setting dictates when this switch occurs. When set to 1, the digital IF section operates when the RBW is 100 Hz or below. When set to 2, the digital IF section operates when the RBW is 30 Hz or below.

If the span is above 200 kHz, or equals 0 Hz, the digital IF mode automatically switches to the analog IF mode.

Set DIGITAL IF to OFF to use the analog IF section at all times.

NOTE

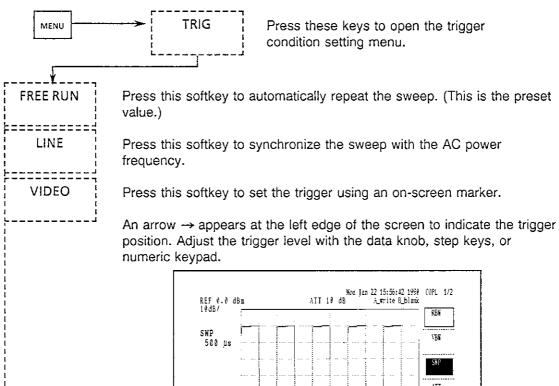
- 1. When the digital IF section is operating, the functions listed in Table 5.1-5 cannot be used.
- 2. The digital IF dynamic range is reduced to about 75 dB in the input frequency range of ±300Hz.
- 3. The analog IF section is particularly sensitive to changes in temperature for an RBW of 30 Hz or 10 Hz. If you use the analog section for these low RBW frequencies, first calibrate the instrument using the CAL key. The bandwidth, signal level, and noise level are not accurate at 10 Hz RBW in analog IF mode. The screen shows "RBW *10Hz" to indicate this.

Table 5.1-5 Functions That Cannot Be Used in Digital IF

SWEEP TIME
VIDEO BW
MARKER CONTER
SWEEP TRIGER
TRACE DET
WINDOW SWP
FULL SPAN
LOG SPAN
ZERO SPAN
EXT TRIGGER
SWEEP MODE
AUTO ZOOM

PREV MENU

Press this softkey to return to the previous menu.


5-19 Feb 28/92

5.1.6 Menu Keys

The MENU key opens softkey menus that control triggering, trace detection, the sweep, the display, and input/output.

(1) Trigger Menu

When taking measurements in zero span mode, use the trigger menu to select the appropriate triggering method. You can also use triggering to capture intermittent signals.

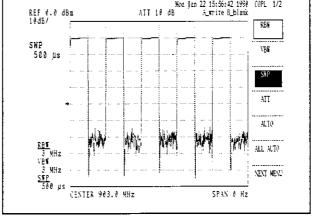
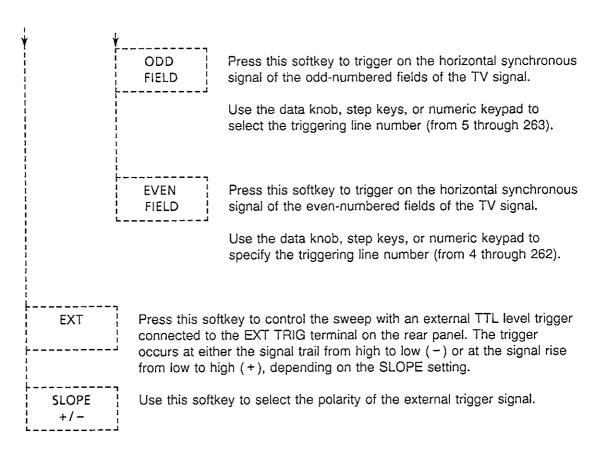


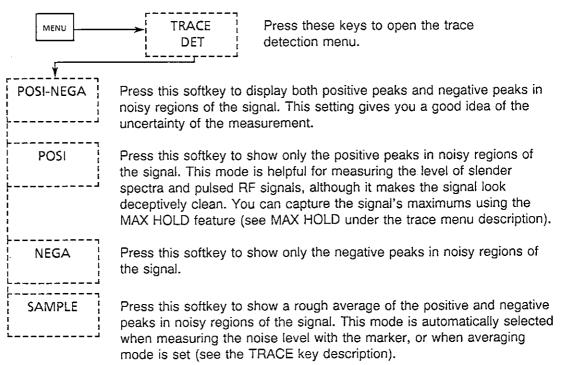
Figure 5.1-11 Triggering with an On-screen Marker

TV-V Press this softkey to trigger on the vertical synchronous signal of a TV video signal.

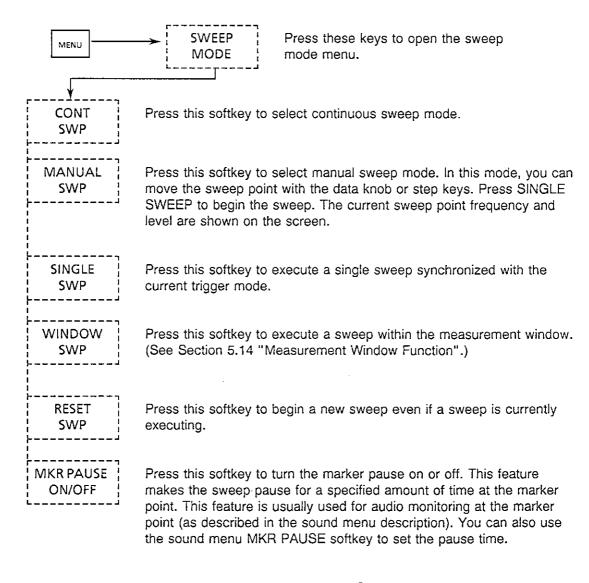

An arrow → appears at the left edge of the screen to indicate the trigger position. Adjust the trigger level with the data knob, step keys, or numeric keypad.

TV-H Press this softkey to trigger on the horizontal synchronous signal of an

Press this softkey to trigger on the horizontal synchronous signal of an NTSC TV video signal.


This trigger is valid only for sweep times of 20 ms or less.

5-20 Feb 28/92


(2) Trace Detection Menu

Use trace detection mode to control how the analyzer displays noisy signals.

(3) SWEEP Mode Menu

Set the sweep time using the CPL key, and set other sweep features with the sweep mode menu.

NOTE -

You cannot use the MKR PAUSE function in ZERO SPAN mode.

(4) Sound Menu

Press the SOUND softkey to use the sound feature. A marker appears and the demodulated wave at the marker point can be heard through the internal speaker or the front panel headphone jack.

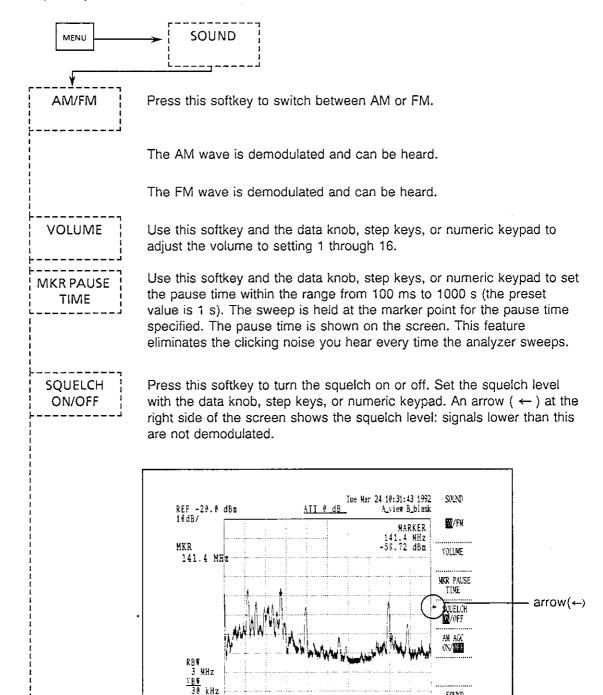
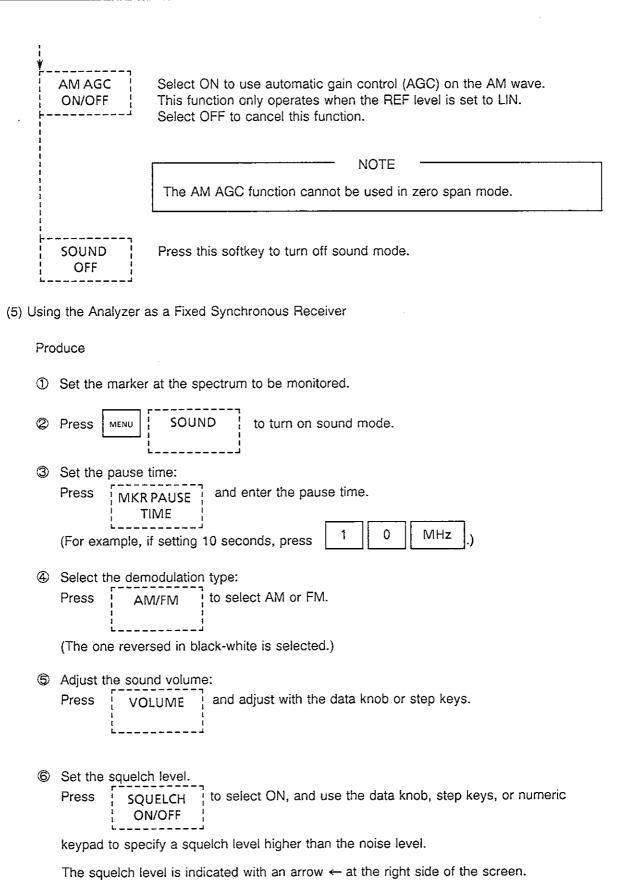
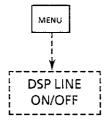



Figure 5.1-12 Setting the Squelch Level

SWP 50 ms

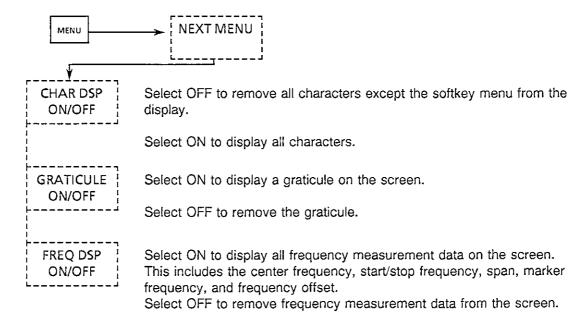
CENTER 255.8 MHz

SOUND

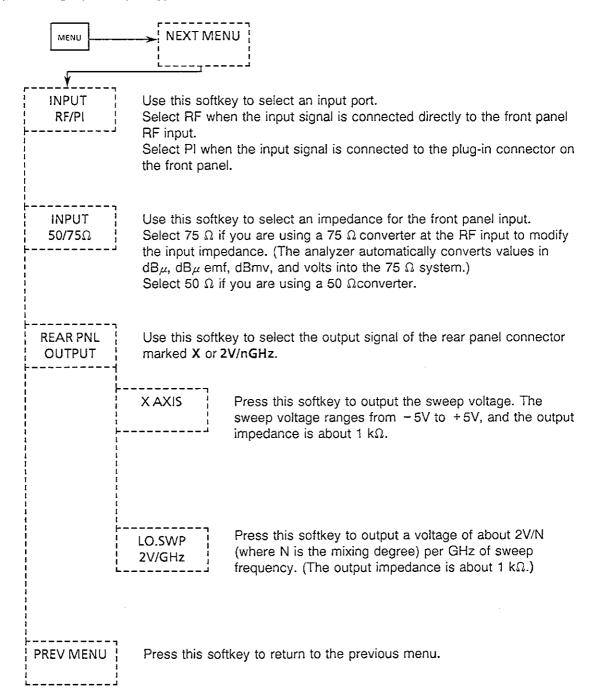

5-24

Feb 28/92

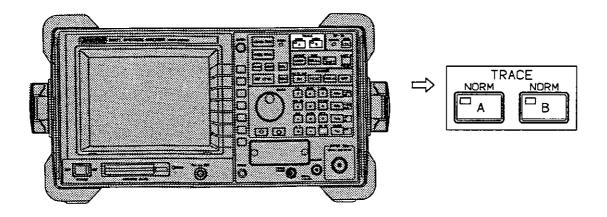
Set the sound mode to OFF.



(6) Setting the Display Line



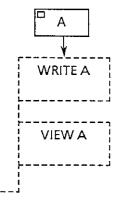
Use this softkey to turn the display line on and off. The display line is a horizontal cursor line you can use for comparing waveform levels. You can set the display line anywhere between the lowermost level and the reference level. (The preset value is -50 dBm.)


(7) Selecting the Display Features

(8) Selecting Input/Output Types

5.2 Trace Section Functions

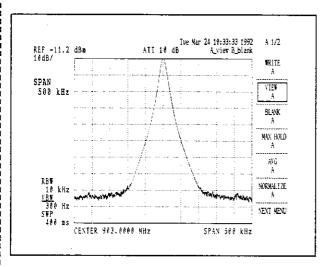
The analyzer has two trace memories: A and B. Each trace can be set to write the results of the current sweep or to view the results of a previous sweep. You can set both traces to write at the same time. The trace memories are not saved after you turn the power off, although the trace data can be stored in internal memory locations or on the memory card. The trace section provides an averaging mode to reduce noise, and has various other waveform comparison and calculation functions.


The analyzer handles each trace as digital information. The original analog signal is input through the RF/IF section, detected by the LOG/LIN amplifier, and then digitized for display. The digital data is stored in trace memory and displayed under CPU control. The CRT display is 701 pixels wide and 401 pixels high; each horizontal point has one level data point making up the trace.

NOTE

- Averaging mode (with sample trace detection mode) is not available during MAX HOLD (POSI trace detection mode) or MIN HOLD (NEGA trace detection mode) measurements.
- Conversely, MAX HOLD (POSI trace detection mode) or MIN HOLD (NEGA trace detection mode) measurements are not available during averaging measurements (which use SAMPLE trace detection mode).

Traces A and B have identical softkey menus. The following description of trace A also applies to trace B.


(1) Trace Mode

Press this softkey to rewrite trace memory A with each new sweep. The results appear on the screen.

Press this softkey to stop rewriting trace memory A and display the current memory contents.

If trace A was previously in BLANK mode, trace A appears on the screen again.

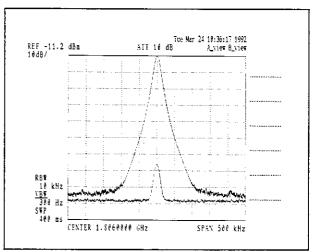
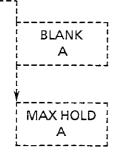
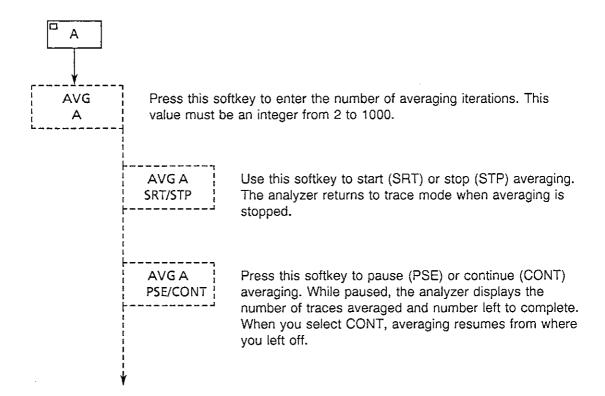
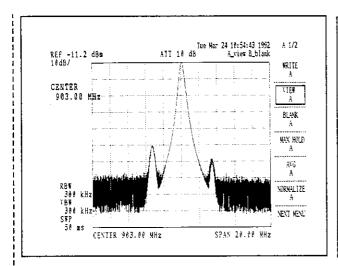



Figure 5.2-1 Basic Waveform in VIEW Mode

Figure 5.2-2 Second Higher Harmonics in WRITE B

Press this softkey to remove trace A from the screen. The trace data remains in memory and can be redisplayed by selecting view mode for trace A.


Press this softkey to make a trace of the maximum amplitude levels over time. The analyzer then compares each point on the frequency axis to the new data from the current sweep, saves the greater of the two, and displays the results on screen.


In this mode, trace detection mode is automatically set to POSI (see Trace Detection Mode under the MENU key description).

5-28

(2) Averaging Mode

In averaging mode, the analyzer averages the amplitude of each existing data point with the new amplitude from the latest sweep. It then replaces the old amplitude value with the new averaged value. Averaging can improve the signal-to-noise ratio more quickly than noise reduction using the video bandwidth feature. Averaging also allows you to perform quantitative analysis of random components and to measure signals buried in noise. In averaging mode, the trace detection mode is automatically set to SAMPLE.

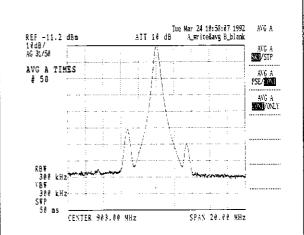


Figure 5.2-3 AVG = None

Figure 5.2-4 AVG = 31st

AVG A CONT/ONLY Use this softkey to select how long the analyzer stays in averaging mode. Select continuous (CONT) to have the analyzer continuously average new data with existing data. The analyzer uses formula 1 shown below. Select ONLY to average only the set number of averaging iterations, using formula 2. When complete, the analyzer returns to view mode.

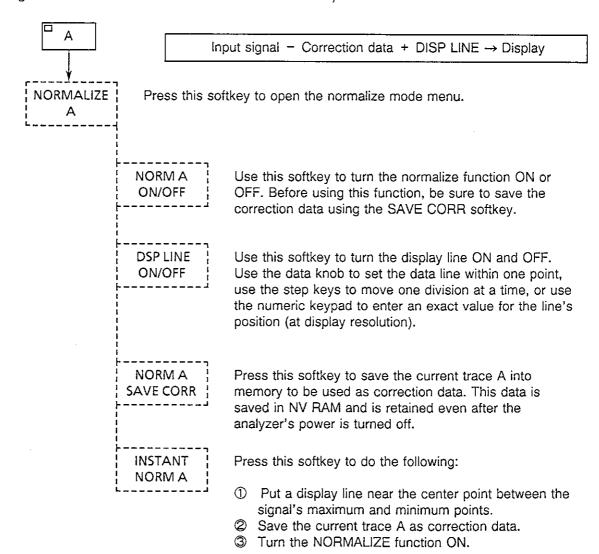
Averaging Formulas

If $N \ge n$: Formula 1: $\overline{Yn} = \text{Sigma/n}$

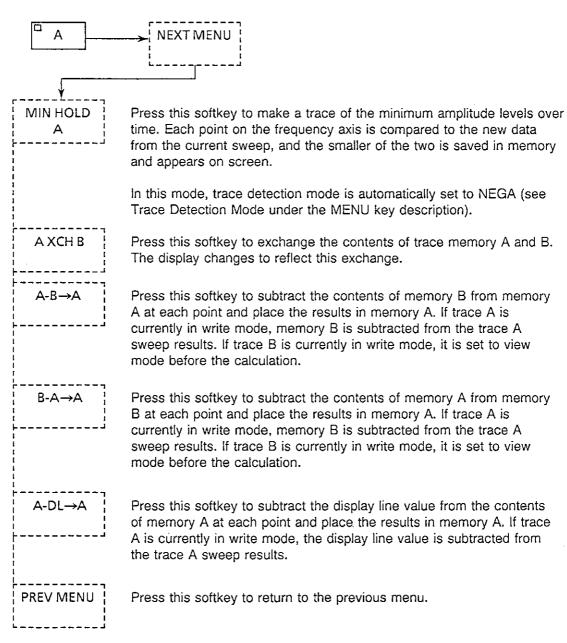
If N < n: Formula 2: $\overline{Yn} = \{(N-1), \overline{Yn-1}\}/N + Yn/N$

n: The number of averaging iterations completed

N: The number of averaging iterations specified

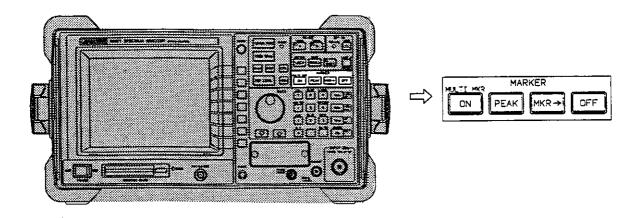

Yn: nth Trace data
Yn: nth Average data

 \overline{Y} n – 1: (n-1)th Average data


Sigma: Sum of data up to nth point

(3) Normalize Mode

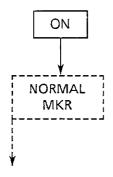
The normalize function displays the difference between the input signal and a set of correction data stored in memory, plus the value of a display line. (The correction data is obtained from a signal saved as a reference. See SAVE CORR below.)



(4) Calculation Mode

5.3 Marker Section Functions

The marker function enables you to superimpose normal markers or a delta marker (for relative measurements) on the waveform displayed on the screen. The analyzer then displays the frequency and amplitude at the marker position. In addition, the analyzer enables you to use markers for signal tracking and finding peaks, and allows you to send marker data to another function.



5.3.1 Marker ON

Press the ON key to turn on the normal marker and open the marker menu. The menu contains softkeys for using the delta marker, frequency counter, signal tracking, noise measurement, amplitude measurement, auto-peaking, and display line features.

(1) Normal Marker and Delta Marker

Press this softkey to turn on the normal marker (indicated by \spadesuit). The frequency and the amplitude at the marker point appear on the screen. Adjust the marker with the data knob or step keys, or enter a specific frequency with the numeric keypad.

5-33 Feb 28/92

△ MKR

Press this softkey to fix the delta marker on the waveform, then rotate the knob to position the normal marker for measurements relative to the delta marker. The screen shows the difference in the frequency and the amplitude between the delta and normal markers. Adjust the normal marker with the data knob or step keys, or enter a specific frequency with the numeric keypad.

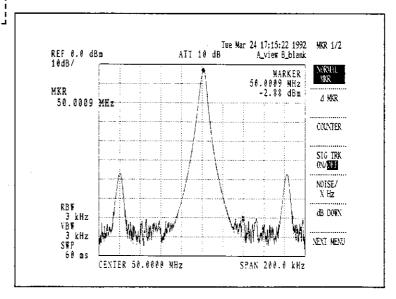


Figure 5.3-1 Normal Marker

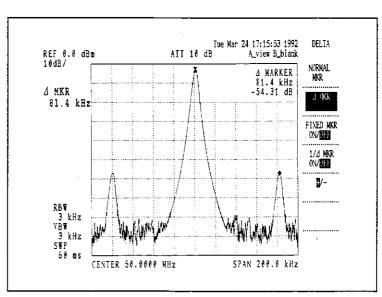
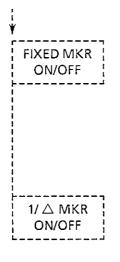



Figure 5.3-2 Delta Marker

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

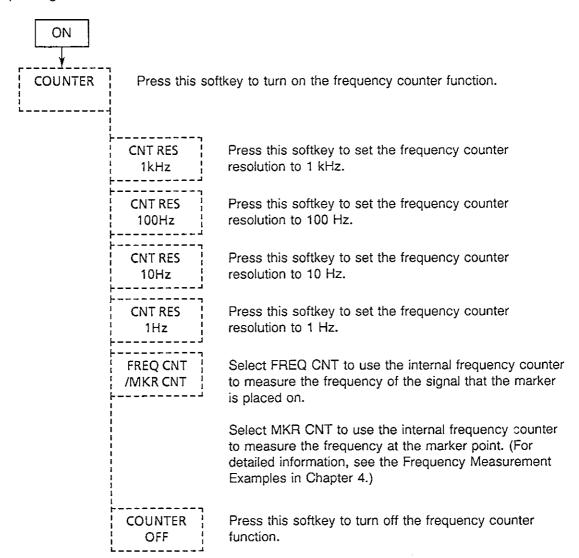
Select ON to fix the delta marker at the current frequency and amplitude. These values are stored in memory and are used as reference values the next time this function is turned on, even if the center frequency and the reference level have been changed.

Select ON to display the reciprocal of the delta marker value. This function is useful for determining the modulation frequency of a demodulated wave in zero span mode, as described in Chapter 4.

How to Shift the Marker Between Trace A and B

Press A to shift the active marker to point ① on trace A.

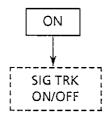
Press B to shift the active marker to point ② on trace B.


(Note that the delta marker does not move.)

(2) Frequency Counter Function

The normal marker only makes rough frequency measurements based on the display data. The frequency counter function lets you make precision frequency measurements using the analyzer's internal frequency counter.

If the marker point is higher than the noise level by 25 dB or more, the analyzer measures the frequency of the signal containing the marker instead of the frequency at the marker position, and you do not need to set the marker exactly at the spectrum peak. However, the amplitude indicated is the amplitude at the marker point. To make precision frequency measurements exactly at the marker position, select the marker counter function described below.


You can set the frequency counter resolution as low as 1 Hz. However, as the counter resolution decreases, the gate time becomes longer, and as a result the sweep time increases. The frequency counter function cannot be used when the SIGNAL TRACK function is operating.

(3) Signal Track Mode

In signal track mode, the marker and the center frequency setting follow the signal as it drifts, so that the signal is always centered on the screen. (If the signal drifts off-screen within one sweep, it may not be tracked.)

If you narrow the span in signal track mode, the signal tracking function changes the center frequency to keep the signal centered.

Use this softkey to turn signal track mode ON or OFF.

NOTE

Even smooth slopes can be tracked accurately by modifying the $\triangle X$ and $\triangle Y$ settings, as explained in paragraph 5.3.2, Peak Search.

(4) Measuring Noise/Hz

The analyzer enables you to measure the rms of the noise level normalized at the noise power bandwidth from 1 Hz to 100 MHz, using a variety of reference levels.

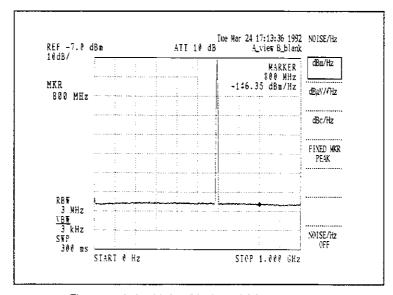
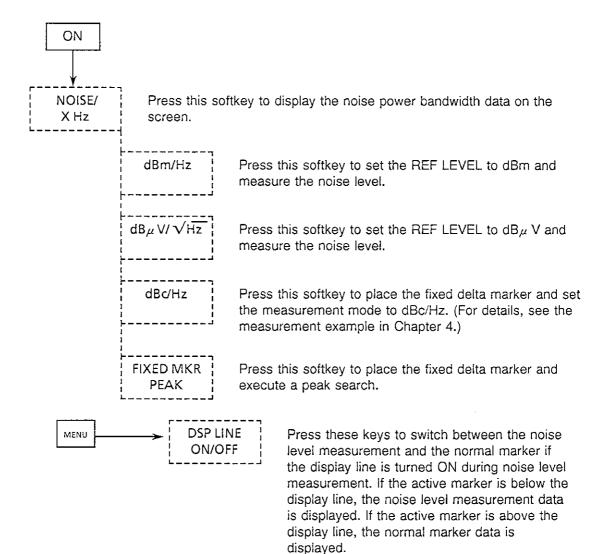



Figure 5.3-3 Noise/Hz Level Measurement

(5) Setting X dB Down

The X dB Down function lets you enter a reference point and then display the difference in the frequency and level at a specific amplitude below the reference point. The X dB value can be set within the range from 0 to the screen's dynamic range. The preset value is 3 dB.

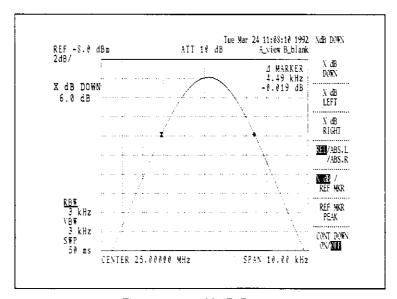
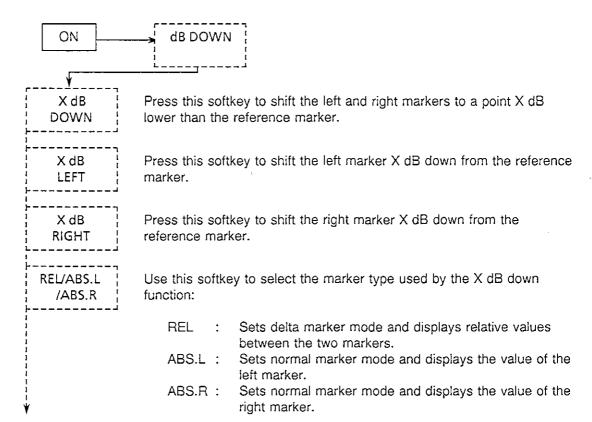
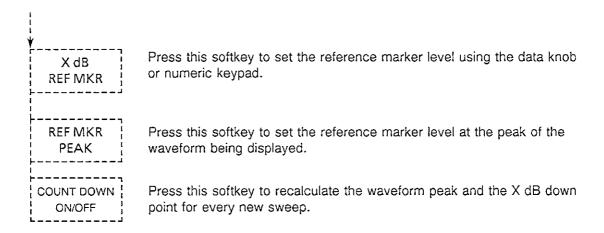
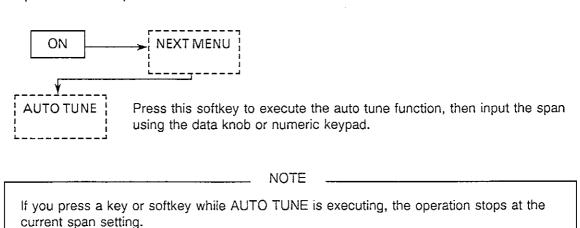
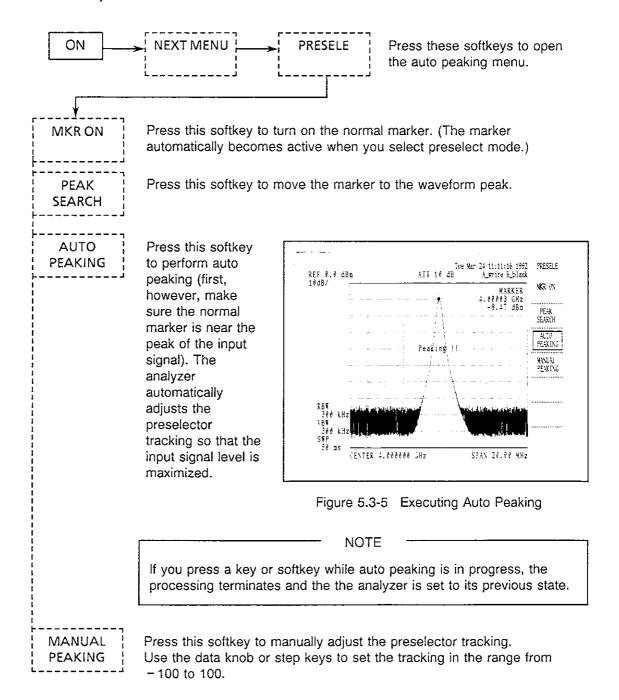




Figure 5.3-4 X dB Down

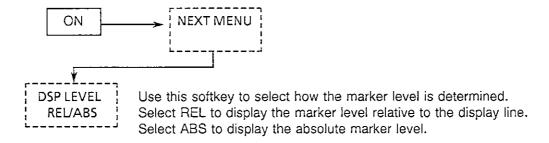


5-39 Feb 28/92


(6) Using Auto Tuning

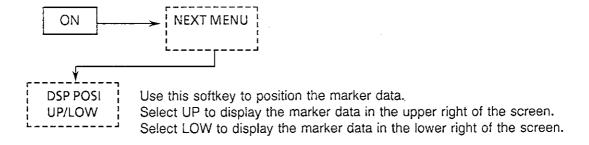
The auto tuning feature provides a convenient way to center an input signal and set the reference level by pressing a single key. When you use auto tune, the analyzer adjusts the span within the range of about 40 MHz to 8.3 GHz for the R3265, and about 40 MHz to 26.5 GHz for the R3271. The analyzer then finds the input signal peak, centers the signal, sets the peak level as the reference level, and turns on the signal track function. You are then prompted to input a narrower span.

(7) Setting the Preselector


The R3265 and the R3271 use a tracking preselector to increase their dynamic range at high frequencies. In the input range from 3.5GHz to 8.3GHz for the R3265 and from 500MHz to 8.3GHz for the R3265P from 3.5GHz to 26.5GHz for the R3271 and from 500MHz to 26.5GHz for the R3271P, tracking must be adjusted between the preselector's sweep frequency and the input sweep frequency (the "peaking" adjustment). The auto peaking feature provides a convenient way to do this.

5-41

(8) Selecting Relative or Absolute Marker Measurement


If the display line is on, you can display the absolute marker level or the marker level relative to the display line.

NOTE

The delta marker operates independently of this setting. The usual delta marker information appears even if the display line is turned on.

(9) Positioning the Marker Data on the Screen

5-42

5.3.2 Peak Search

The analyzer's peak search functions include the next peak functions for placing the marker on various peaks, the $\triangle X$ and $\triangle Y$ settings for defining what the analyzer considers to be a peak, and functions for listing waveform peaks in a table.

(1) Peak Search Menu

PEAK

Press this key to determine the maximum level of the waveform containing the marker. The marker is placed on the waveform's maximum level, and the frequency and the level at that point are displayed. If the measurement window is ON, the peak search is executed within the window. (See section 5.14.)

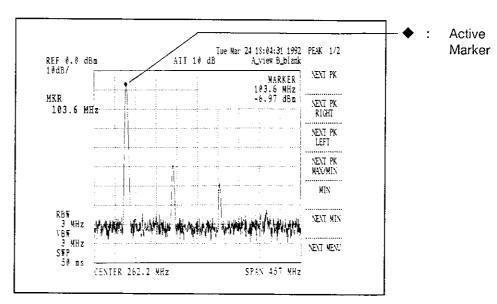
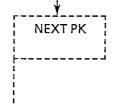




Figure 5.3-6 Peak Search Screen

Press this softkey to move the marker in descending order to the next peak on the waveform. You can display up to 256 marker points and the frequency and level of each.

The next peak function only operates if the trace is in view mode or after a single sweep. If you press this softkey during a sweep, you may not get valid results.

NOTE

Be sure to save the data collected using the NEXT PEAK functions, since it's erased the next time you press PEAK or MIN search.

The NEXT PEAK data is also erased if you manually adjust the marker or modify $\triangle X$ or $\triangle Y$.

(2) Setting $\triangle X$ and $\triangle Y$

If the analyzer's peak search function is not finding all the peaks you expect it to, you may need to adjust the $\triangle X$ and $\triangle Y$ setting. These settings define the slope near which the analyzer expects to find a peak. $\triangle X$ and $\triangle Y$ are set in pixels (display points).

When you execute a peak search, the analyzer looks at the waveform for a rising slope that is $\triangle Y/\triangle X$ pixels or greater and is accompanied by a trailing slope that is $\triangle Y/\triangle X$ pixels or greater. It then finds the maximum value between these slopes: this value is the peak. In general, decreasing $\triangle Y$ for a given $\triangle X$ enables the analyzer to find peaks of less sharp spectra, and decreasing both $\triangle X$ and $\triangle Y$ enables the analyzer to find the peaks of smaller spectra. Since $\triangle X$ and $\triangle Y$ are based on the screen resolution, zooming in on a waveform may also improve peak searches.

Set $\triangle X$ and $\triangle Y$ as follows:

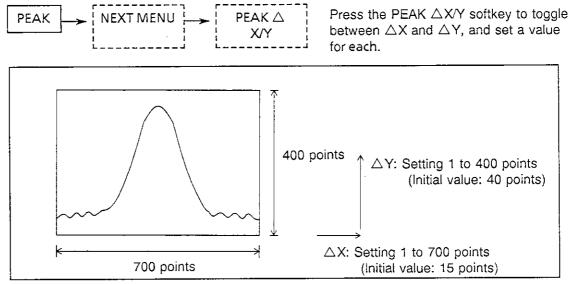


Figure 5.3-7 △X and △Y Resolution

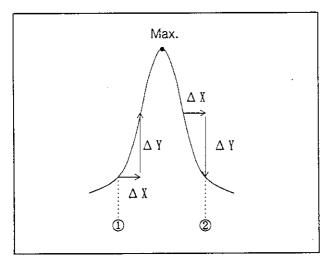
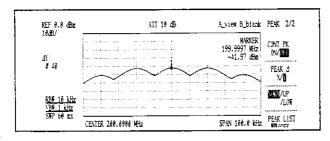


Figure 5.3-8 Setting △ X and △Y

decreases by $\triangle Y$ or more over the interval $\triangle X$ is defined as the trail.


increases by $\triangle Y$ or more over the interval $\triangle X$

The point 1) where the waveform data

The point @ where the waveform data

is defined as the rise.

During a peak search, the analyzer searches for the maximum value between points ① and ②.

(Example 1) If $\triangle X = 15$ and $\triangle Y = 40$,

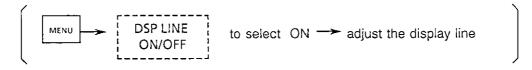
 $\triangle Y$ is so large that the analyzer only finds one peak.

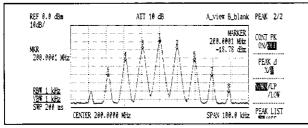
(Example 2)

If $\triangle X = 15$ and $\triangle Y = 10$,

 $\triangle \mathbf{Y}$ is small enough that the analyzer finds several peaks.

(3) Modifying the Peak Search Level


You can modify the peak search so that the analyzer will search for peaks above or below the display line.


Select NORM to search the entire waveform. (This is the preset setting.)

Select UP to search the level above the display line (see Figure 5.3-10).

Select LOW to search the level below the display line (see Figure 5.3-11).

Turn on the display line and adjust its level before setting UP or LOW as follows:

The peak list function will not operate in PEAK search or MIN search mode.

NOTE

Figure 5.3-9 NEXT PK when NORM is selected

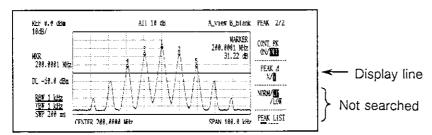
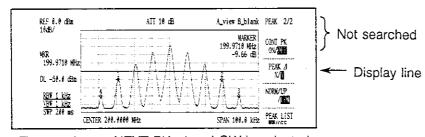
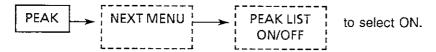
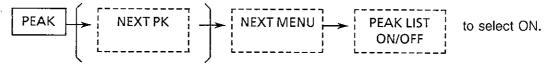


Figure 5.3-10 NEXT PK when UP is selected


Figure 5.3-11 NEXT PK when LOW is selected

(4) Peak List Display

This function creates a table that lists up to eight peaks in a selected order, along with their frequencies and levels. Numbered markers appear on each of the peaks.

① For example, to list the eight highest peaks in ascending order (this is the preset setting), press:

The softkey in brackets can be any of several; the options are described below.

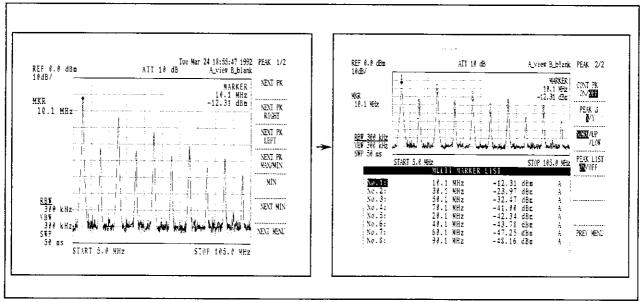
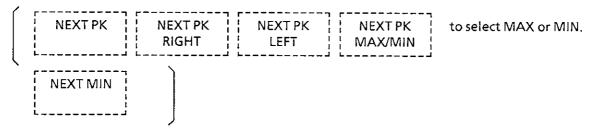
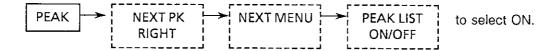




Figure 5.3-12 Listing in Ascending Order

② To list peaks by another criterion, press one of the following softkeys instead of the NEXT PK softkey:

For example, to list the peaks from left to right starting at the peak preceding the peak with the active marker ◆, press the following keys:

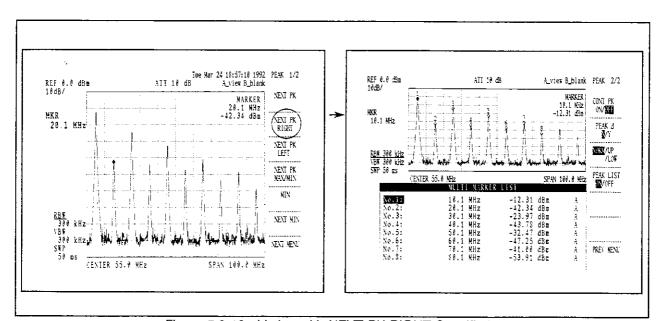
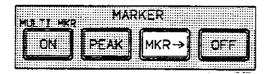
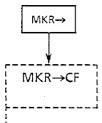




Figure 5.3-13 Listing with NEXT PK RIGHT Specified

5.3.3 Marker → (Marker to)

The marker-to function lets you use the current marker data (frequency, level, and data) as the setting for another function. For example, you can set the marker on a peak and then press MKR—CF to change the center frequency to the peak's frequency.

Press this softkey to change the center frequency to the active marker frequency.

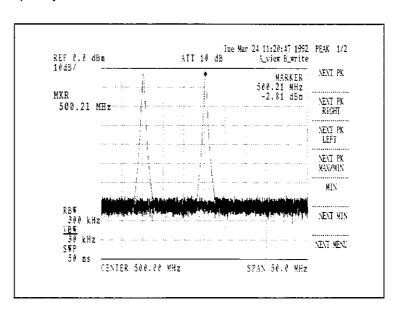
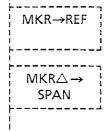
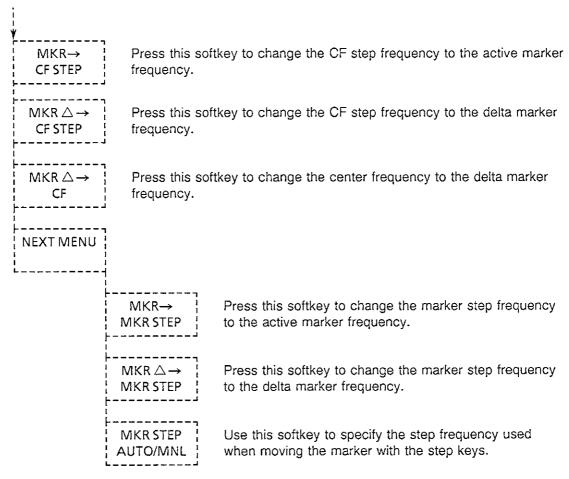




Figure 5.3-14 Setting MKR → CF

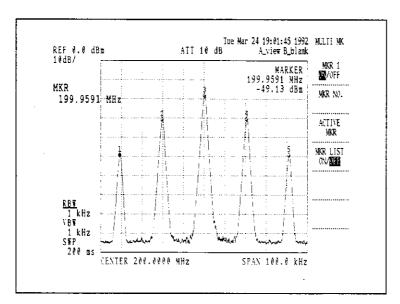
Press this softkey to change the reference level to the active marker level.

Press this softkey to change the frequency span to the delta marker frequency.

Select AUTO to set the step frequency to 1/10 of the frequency span. Select MNL to enter the step frequency size. (Enter a time value if the analyzer is in zero span mode.)

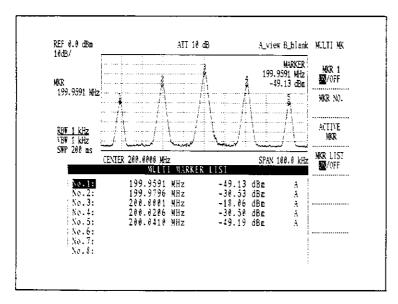
5.3.4 Marker OFF

Press OFF to remove all markers from the screen and cancel all marker-related functions, including the following:



- Counter
- Noise/Hz
- Marker Pause
- Sound
- Single Track
- Manual Sweep
- AUTO TUNE
- 1/△ Mark
- Continuous dB Down

5.3.5 Multi Marker Function


The multi marker function lets you simultaneously display up to eight markers on traces A and B, along with the frequency and level at the marker points. You can move the active marker (indicated by �) with the numeric keypad, the step keys, or the data knob.

You can also use the delta (�) marker to measure the relative distance to the multiple markers.

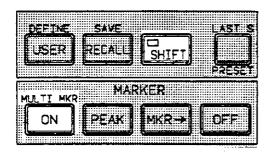
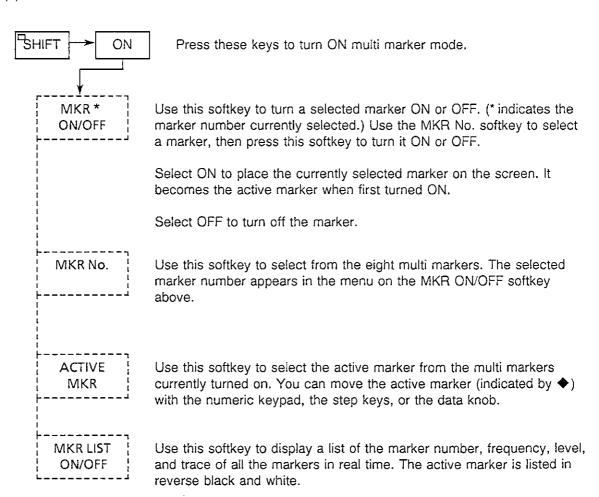

This example shows five markers on the screen. (The first marker is active.)

Figure 5.3-15 Multi Marker Display



You can use the multi marker listing function to display the frequency and level data of all markers, as shown.

Figure 5.3-16 Multi Marker Listing

(1) Multi Marker Menu

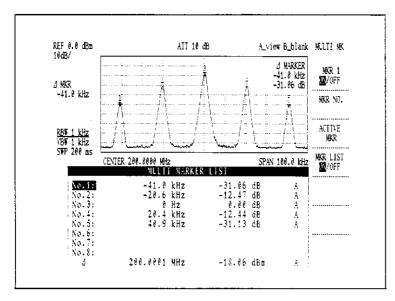


Figure 5.3-17 An Example of Delta Marker Listing

- This example shows a delta marker listing:
 - The delta marker (▼) is set on the third marker, which is active (◆).
 - Relative values are measured from the delta marker.
 - The absolute value of the delta marker appears at the end of the list.

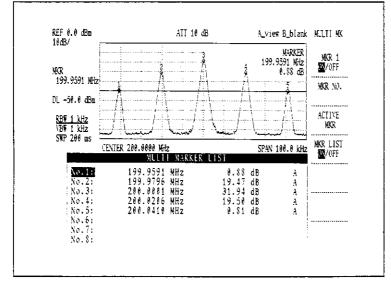
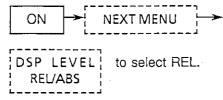
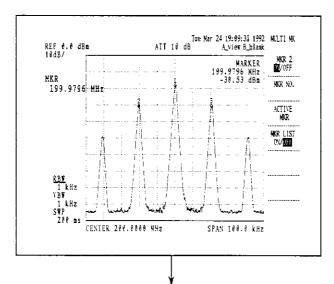
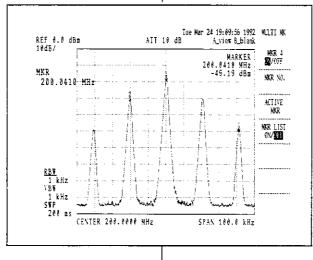



Figure 5.3-18 Example Listing with a Display Line

This example shows a listing using the display line:
The levels listed are measured relative to the display line.
For this type of listing, be sure to set the display line to measure relative values as follows:



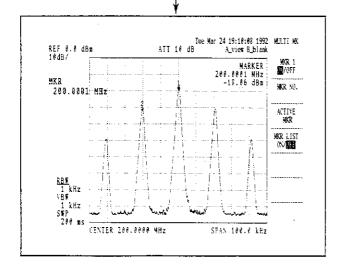
NOTE


You can't use frequency counter mode and multi marker mode at the same time.

(2) How to Use the Multi Markers

①Turning On the Multi Markers

Press SHIFT ON to turn ON marker 1.


To turn ON marker 2,

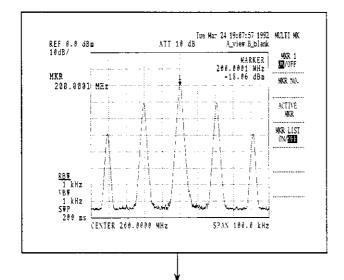
press MKR No. to select marker

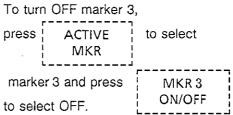
2, and press MKR 2 to select

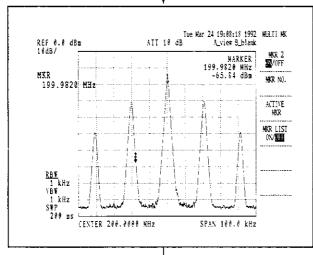
ON. ON/OFF

Marker 2 becomes the active marker and can be moved on the waveform.

To turn ON marker 2,

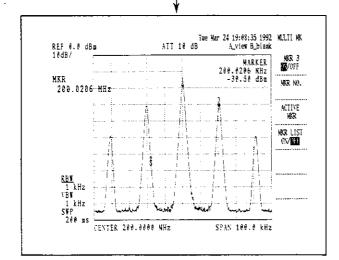

press MKR No. to select marker


3, and press MKR 3 to select


ON. ON/OFF

Marker 3 becomes the active marker and can be moved on the waveform.

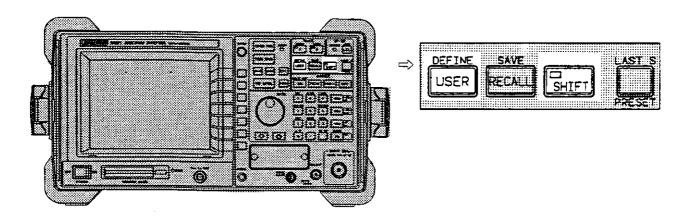
2 Turning Off the Multi Markers



When marker 3 is turned OFF, marker 4 automatically becomes the active marker.

If MKR4 is turned OFF ON/OFF

next, marker 1 becomes the active marker.


Thus, when a marker is turned OFF, the remaining marker with the lowest number that is larger than the marker you turned off becomes the active marker.

If no remaining marker has a larger number, the marker with the smallest number becomes active.

5.4 User-Defined Softkey Functions

Most of the analyzer's keys are software-based rather than hardware-based. This makes the analyzer a very flexible instrument. The user-defined softkeys function lets you assign the softkeys that you use most often to the user menu. Moreover, you can reassign any softkey to any softkey menu, then save your customized menus to an internal memory location or to a memory card.

Each of the analyzer's front panel keys defines a softkey group. For example, the CENTER FREQ key defines the center softkey group. Each group has seven menu spaces. The seven spaces in the user softkey group are initially not assigned any softkey members.

(1) Reassigning Softkeys to Menus

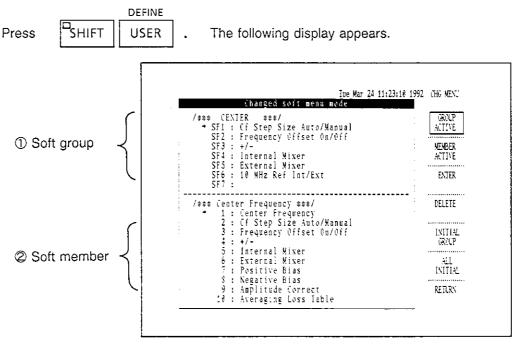
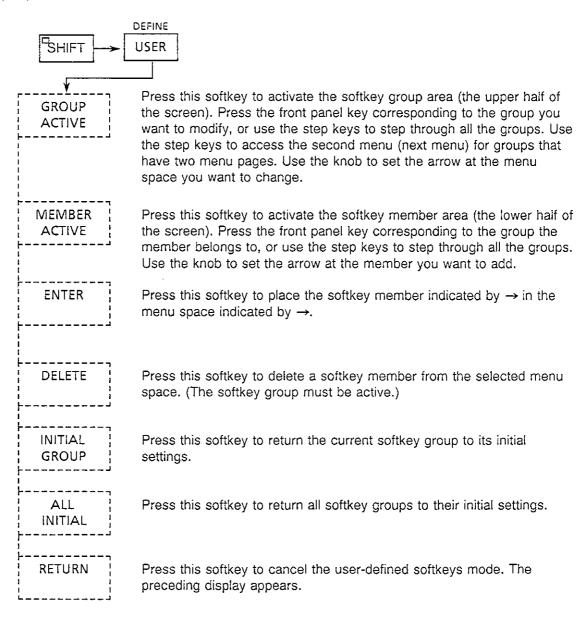
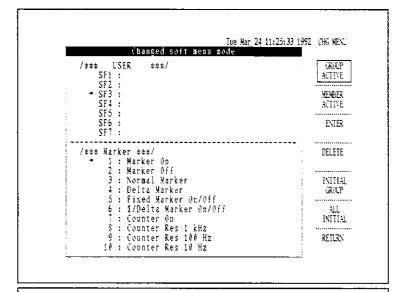
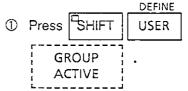



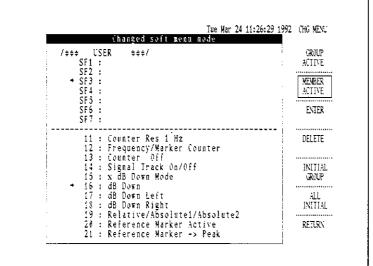
Figure 5.4-1 User-Defined Display


(2) Explanation of the Menu



NOTE

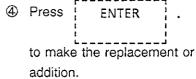
The customized menu remains set even if power is turned off. However, before using GPIB remote control, reset all menus to their initial state. You can save customized menus on the memory card (see Section 5.5).


(3) How to Set the User-Defined Softkeys

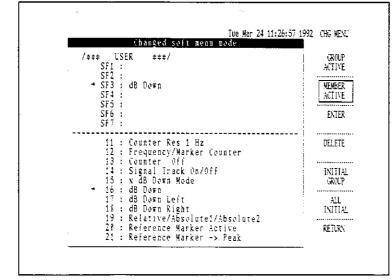
Then use the panel keys or step keys to select the softkey group to modify.

In the example at left, USER is selected.

② Use the data knob to set the arrow(→) at the menu space to modify.

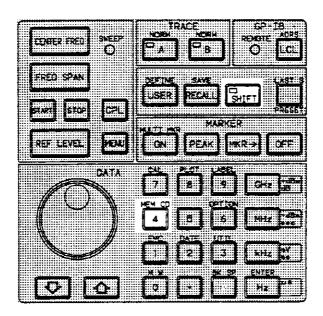

③ Press MEMBER ACTIVE

Then use the panel keys, step keys, or data knob to select the softkey member to add.


In the example at left, MARKER

on the example at left, MARKER

ON dB DOWN is selected.


Note: Softkey members marked with three asterisks (***) cannot be replaced or altered.

5.5 Memory Card Functions

5.5.1 Initializing the Memory Card and Saving or Recalling Custom Menus

This section explains how to initialize the memory card and how to save or recall custom menus defined with the USER DEFINE key. Refer to Section 5.6 for more information about other uses for the memory card.

(1) External View of the Memory Card

Figure 5.5-1 External View of the Memory Card

(2) Inserting and Removing the Memory Card

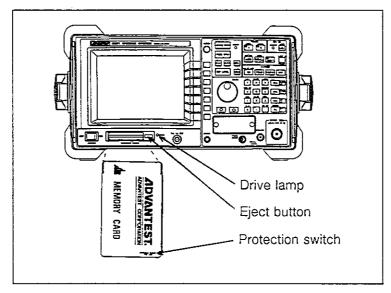


Figure 5.5-2 Inserting and Removing the Memory Card

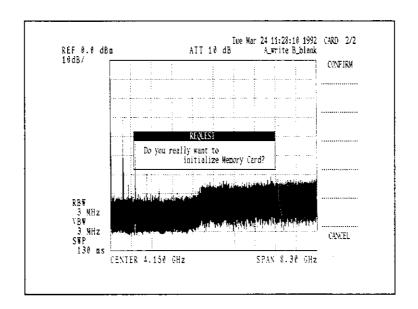
- ① Insert the memory card with the printed surface upward.
- ② Set the protection switch to OFF to allow the analyzer to read and to write from the memory card. Set the switch to ON to prevent the analyzer from writing to the card.
- To remove the card, make sure that the drive lamp is not lit, and press the eject button.

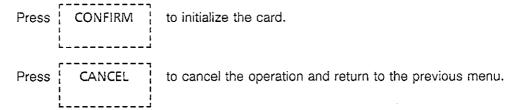
CAUTION

The drive lamp lights when the analyzer reads from or writes to the memory card. Do not remove the card or press the eject button while the lamp is lit or you may damage the card.

(3) Initializing the Memory Card

WARNING


Initializing a memory card erases any data on it.


Before you can use a memory card you must initialize it. During initialization the analyzer checks the card's memory and formatting. To initialize a memory card, do the following:

- Set the protection switch OFF.
- Insert the memory card into the analyzer.

The following screen appears:

When initialization is complete, the message "Memory Card Initialized" appears as shown below. If the message "Memory Card Failure" or "Protection Switch ON" appears, make sure the protection switch is OFF and try again.

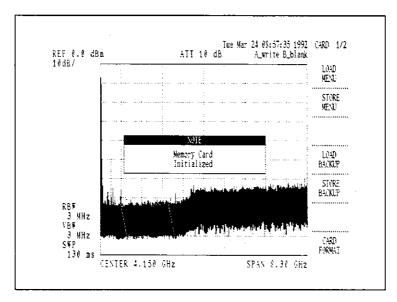


Figure 5.5-3 Initializing the Memory Card

(4) Saving a Custom Menu

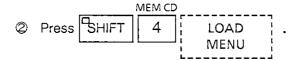
The analyzer can save one user-defined menu setup per card. Do this as follows:

① Insert the memory card into the drive.

The user-defined menu setup is saved to the card. If there is not enough empty memory space on the card, however, the operation may fail. The card's memory space is divided into channels as described in section 5.6. The user-defined menu setup is stored in channel 39 on a 32Kb card, and on channel 79 on a 128Kb card.

CAUTION

- 1. If channel 39 on a 32Kb card or channel 79 on a 128Kb card contains data, it will be erased when the channel is overwritten. When saving soft menu data, first make sure these channels do not contain data you want to keep.
- 2. To protect the saved data, set the protection switch on the card to ON.


R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

5.5 Memory Card Functions

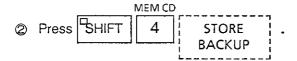
(5) Recalling a Soft Menu

To load a user-defined menu setup from a memory card to the analyzer, do the following:

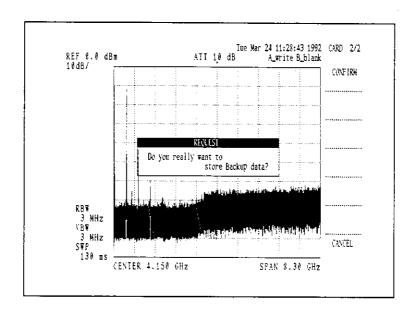
① Insert the memory card containing the user-defined menu.

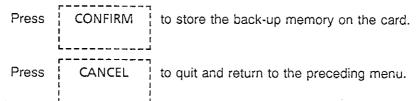
The analyzer loads the user-defined menu setup from the card.

The current menu setup is overwritten when a user-defined menu setup is loaded from the memory card.


5.5.2 Saving Internal Back-up Memory Data to the Memory Card

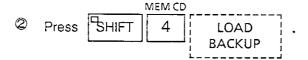
The analyzer has 17 internal memory locations (channels); these are called the back-up memory (as described in section 5.6). You can store an exact copy of this back-up memory on a 128Kb memory card.


(1) Saving Data to the Memory Card

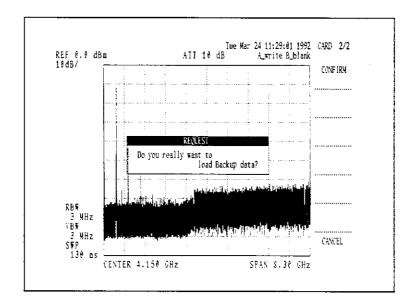

Use this procedure when replacing the back-up memory battery, or when copying the back-up memory to other R3265/3271 analyzers.

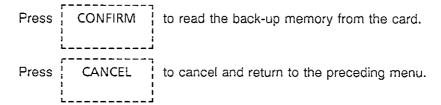
① Insert the memory card into the analyzer.

The following message appears:


- CAUTION -

- The memory card must have a capacity of at least 64Kb to save the back-up memory.
- 2. You don't need to initialize the memory card before saving back-up data, but you will need to re-initialize the card if you ever want to use it for saving other types of data.


(2) Reading Back-up Memory from a Memory Card


Once you've saved a back-up memory to a memory card, you can read it from the card to any R3265/3271 analyzer as follows:

① Insert the memory card into the analyzer's drive.

The following message appears:

5.5.3 How to Handle a Memory Card

(1) Back-up Battery Lifetime

The memory card battery will last up to five years if the card is kept in the temperature range given below.

When replacing the battery for the first time, check the number printed on the memory card rear surface (see Figure 5.5-1).

For example, if KB 9206 is printed on the memory card, that means that the battery was produced in February (month 2) of 1989 (represented by the 9). Therefore, the battery should be replaced in February of 1994.

- CAUTION

The memory card operating lifetime is significantly shortened if it is kept at high temperatures.

Remove the memory card from the analyzer when not in use.

(2) How to Replace the Battery

- ① Use a Phillips screwdriver to remove both screws from the battery holder on the rear of the memory card, and remove the cover.
- Remove the old battery, and insert the new battery so that plus sign (+) can be seen, as shown below.

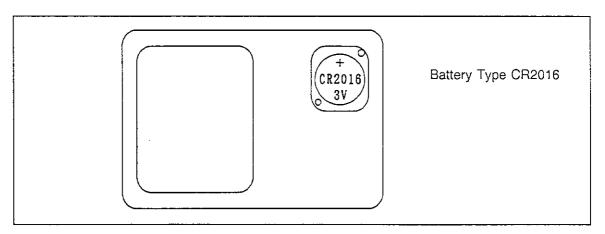


Figure 5.5-4 Memory Card Battery Replacement

3 Replace the cover and its attaching screws.

_ CAUTION _

Replacing the battery erases all data in the memory card. If the card contains important data, copy the data into another memory card before you replace the battery.

Memory cards available: A09505 32Kb, SRAM card, 5 in a set A09506 128Kb, SRAM card, 5 in a set

(3) Memory Card Handling Precautions

- ① Make sure no dust gets into the connector hole. Dust can damage the connector.
- Never touch the connector with a metal object. Static electricity from the metal could damage the connector.
- 3 Do not bend or drop the card.
- Keep the card away from moisture.

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

5.5 Memory Card Functions

(4) Specifications:

Memory capacity

32Kb

Connector

20-pole, 2 pcs

(insertions/removals before failure: at least 5000)

Interface

: I/O bus byte

(based on the Japan Electronic Industry Promotion Association)

Memory back-up battery :

CR2016 (1 piece, replaceable)

Battery Lifetime

5 years (if kept at normal temperature)

Dimensions

54 mm (width) \times 86 mm (length) \times 2.2 mm (thickness)

Environmental conditions:

Avoid condensation

Operating temperature

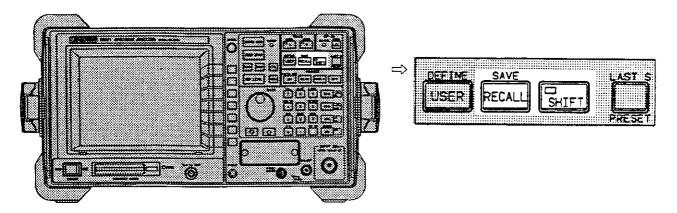
0° to 40° C (32° to 104° F)

Storage temperature

-20° to 60° C (-4° to 140° F)

Relative humidity

10% to 90%


Protection switch

Switched ON/OFF

Write inhibited when the switch is set to ON.

5.6 Save and Recall Functions

You can use the analyzer's save and recall functions to save a variety of data types, including softkey settings and waveform data. You can save this data both in the internal back-up memory or in a memory card, and then recall it when you need it.

Both the back-up memory and the memory card are divided into storage locations called channels. The back-up memory has 17 channels, the first two of which are reserved for special data. The number of channels available on the memory card depends on the free space remaining. The back-up memory and the memory card can store the following data types:

① Back-up memory consists of channel IP and channels 0 through 15:

Channel IP : Contains settings used when the PRESET key is pressed to

initialize the analyzer.

Channel 0 : Contains last state settings used to restore the analyzer to its

previous state after being turned off or initialized.

Channel 1 to 15 : User-defined, and can save the following:

Setting data : 15 items per channel

Trace A and B data

Normalize data

20 screens

Antenna correction table : } 5 items

The memory card contains channels 16 and above. The maximum number of items that can be saved is determined by the memory card capacity, and can include the following:

Waveform data A/B :
Antenna correction table :
Normalization data : in various combinations

Limit line table 1/2 : Loss table :

User-defined menu setup : 1 item per memory card in a predetermined channel

5-69 Feb 28/92

A 128Kb memory card can also store a copy of the analyzer's back-up memory. (See Section 5.5.2, Saving Internal Back-up Memory Data to the Memory Card.) However, this process uses a different format than the channel storage. If you save a copy of the back-up memory, you will have to reformat the memory card to use it for channel storage again.

Valid data when option 71 is installed.

[Saved/Recalled Data]

GATED SWEEP data	DELAY SWEEP data
*SOURCE EXT/INT	DELAY time
GATE position	DELAY SWEEP time
GATE width	DELAY SWEEP ON/OFF
GATED SWEEP ON/OFF	DELAY step size, and AUTO/MANUAL
SWEEP TIME	SWEEP TIME
*TRIGGER mode	*TRIGGER mode

^{*:} Since the trigger level VIDEO or TV-V is recalled at 50% (initial value), the trigger level needs to be adjusted after recall.

5.6.1 Save Function

To view a list of saved data, press SHIFT RECALL .

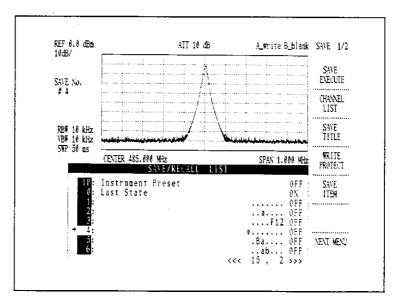
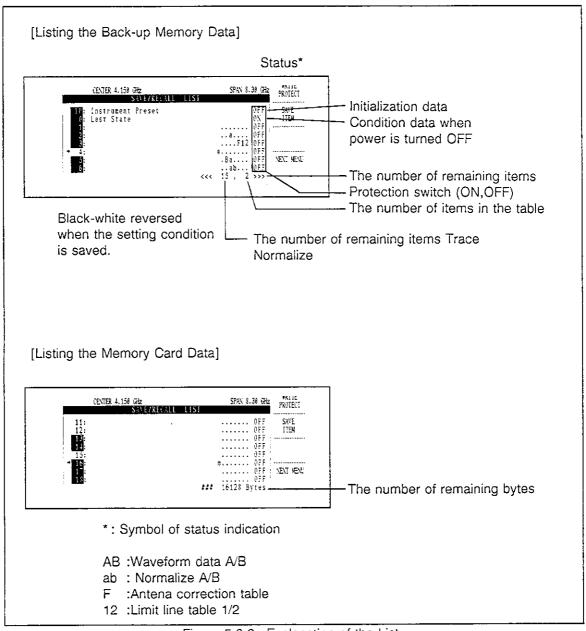
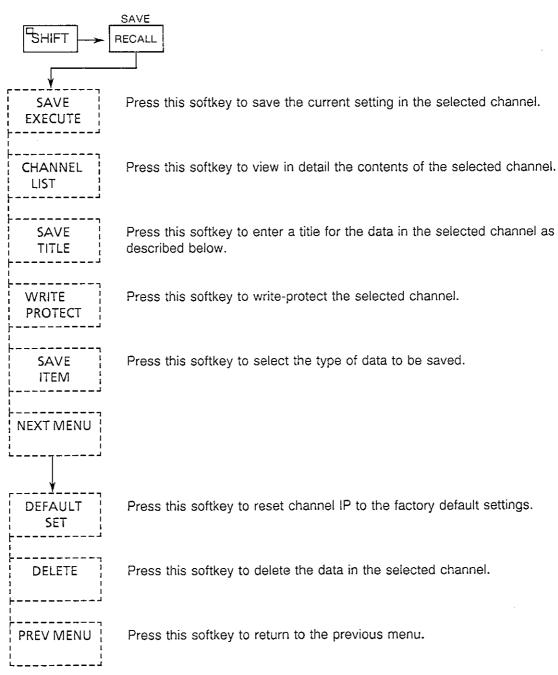
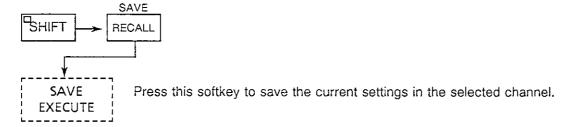


Figure 5.6-1 List of Saved Data

(1) Explanation of the list

The data list shows eight channels at a time, along with the type of data saved in each. You can scroll through the list with the data knob to view all the channels. Channels IP through 15 belong to the internal back-up memory, and channels 16 and above belong to the memory card. Placing the cursor on line 16 or above displays the memory space remaining in the memory card.


Figure 5.6-2 Explanation of the List

(2) Save Menu

Use the items in the save menu to save data to the back-up memory or to the memory card.

(3) Saving Data

The data type selected with SAVE is saved in the selected channel.

Settings data saved in channel IP is used when the PRESET key is pressed to initialize the analyzer.

To reset the initialization data to the factory default settings, press

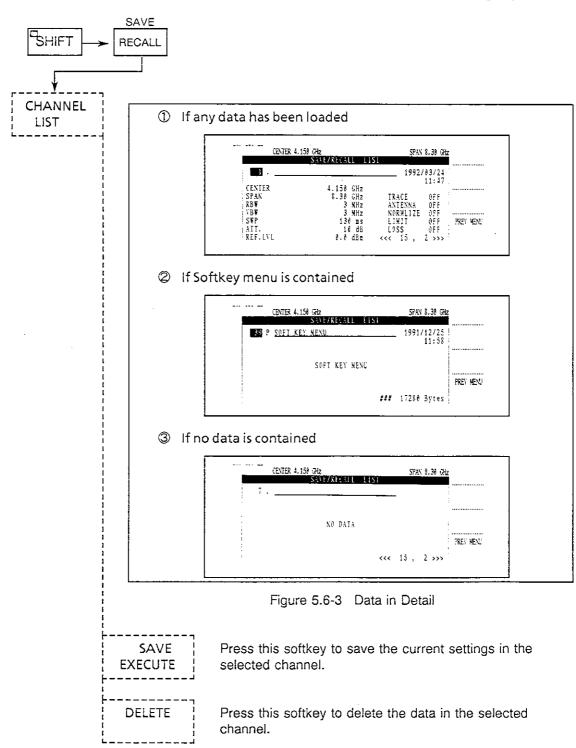
DEFAULT SET

You cannot save data in channel 0. This area of the back-up memory is reserved to store the LAST STATE setting when the power is turned OFF.

- CAUTION -

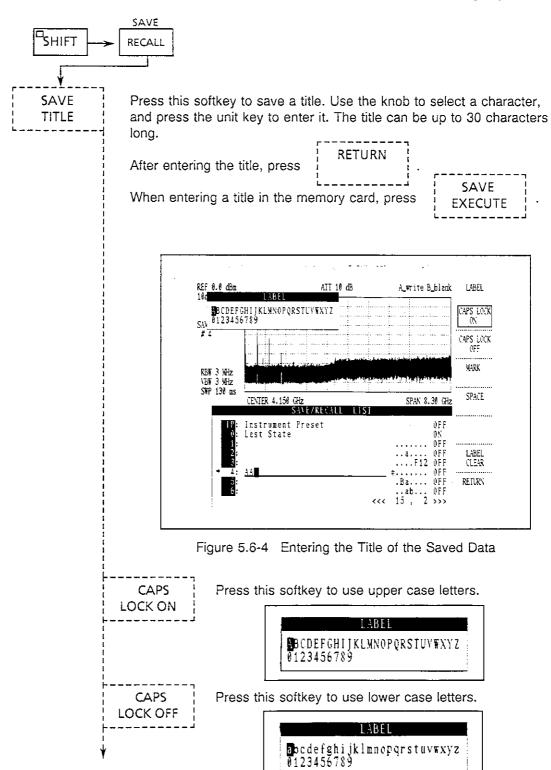
Saving data to a channel erases any data already in that channel. To protect saved data, turn on write protection for that channel.

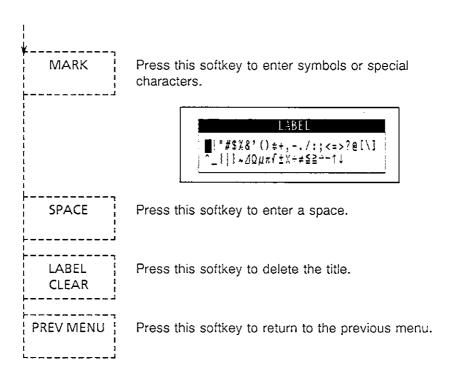
How to Save Data


- ① To save waveform data, set the TRACE section to VIEW mode.
- © To save normalization data, set the NORMALIZE ON/OFF key in the TRACE section to ON.
- To save limit line data, antenna correction data, loss table data, or marker data, set the mode of the corresponding section ON.
- To save user-defined menu data,

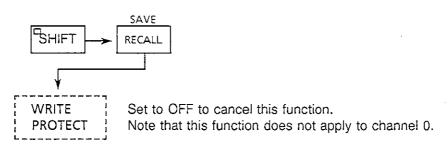
press STORE of the memory card section.

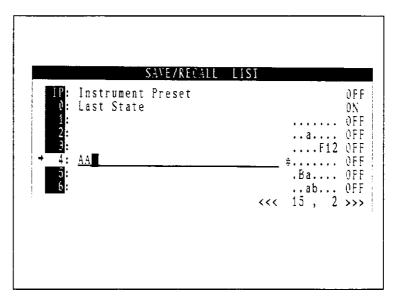
(See Section 5.5, Memory Card Function.)


(4) Viewing Data in Selected Channels


To display more detail about the data in the selected channel, press the following keys.

(5) Entering the Title


The title you give to saved data appears in the save/recall list. (This is different from a trace's label, which appears on-screen.) To give a title to saved data, press the following keys:



(6) Protecting Saved Data

To prevent the analyzer from writing to the selected channel, press the following keys:

5-76 Feb 28/92

(7) Selecting the Type of Item to Be Saved

The save item function lets you specify whether to save trace A data, trace B data, or both, for the various data types. You can store more than one data type in a channel. Use this function by pressing the following keys:

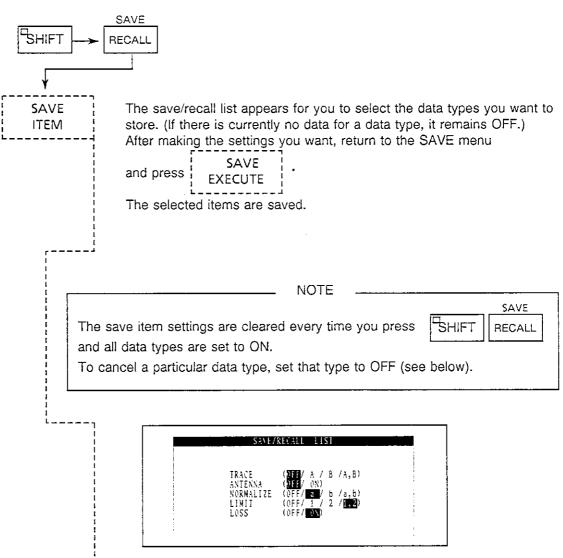
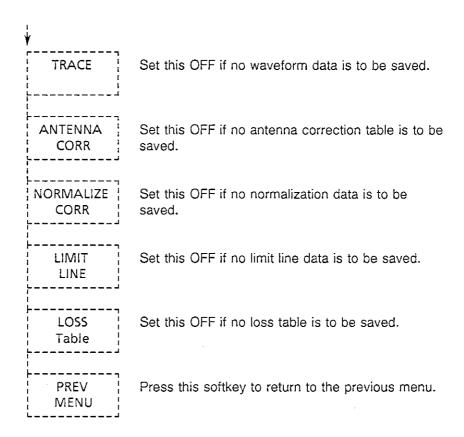



Figure 5.6-5 Selecting the Data Type to Be Saved

(8) Initializing the Saved Data

The analyzer uses the settings saved in channel IP to initialize the analyzer when the key is pressed. These settings remain in channel IP even after turning off the analyzer. To return these settings to the factory defaults, press the following keys:

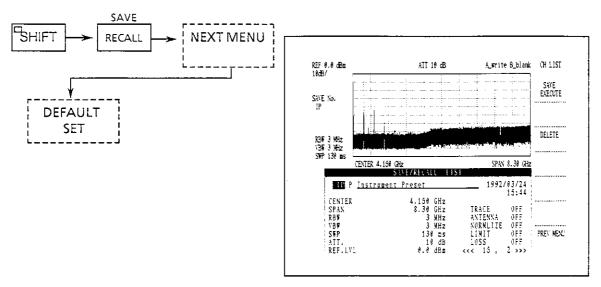
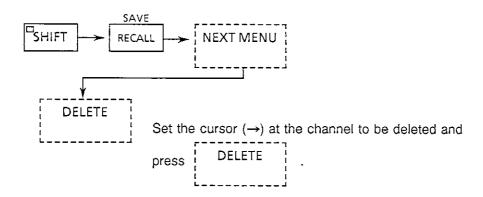



Figure 5.6-6 Listing the Initialization Data

(9) Deleting the Saved Data

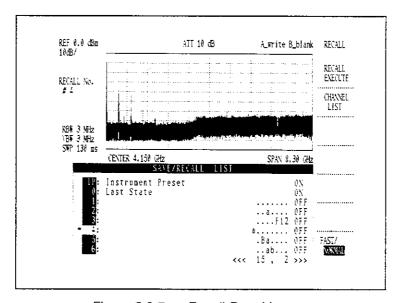
To delete data from a channel, press the following keys:

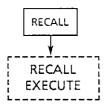
NOTE

You cannot delete data from channel IP, channel 0, or any channel that has write protect set to ON.

5.6.2 Recall Function

The list appears at the lower half of the screen. (The list does not appear if RECALL is set to FAST.)



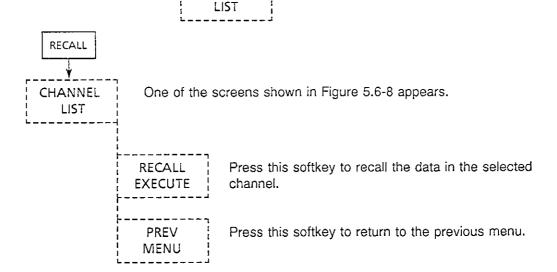

Figure 5.6-7 Recall Data List

To recall the data list (described in section 5.6.1 (1)), press the following keys:

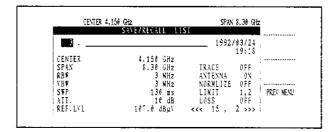
Feb 28/92

(1) Recalling Data

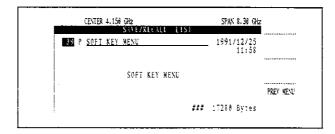
To recall the data in the selected channel, press the following keys:


Press this softkey to recall the selected channel.

If you select channel IP or 0 through 15, the data is recalled from the analyzer's back-up memory.


If you select channel 16 or above, the data is recalled from the memory card.

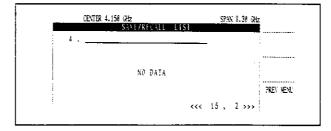
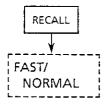
(2) Recall Data in Detail

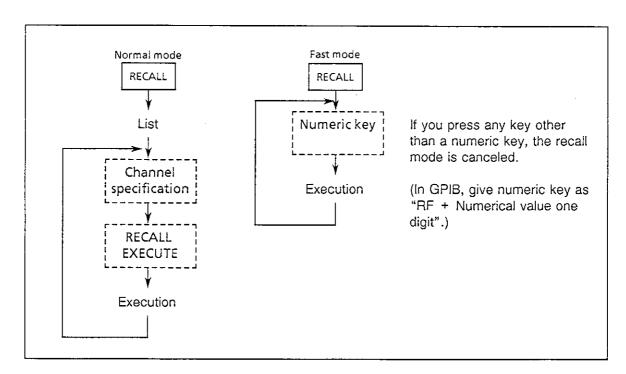

To view detailed information about the data in a selected channel, set the cursor (\rightarrow) at the channel number and press [CHANNEL] :

① When setting data is contained

When soft menu is contained

3 When no data is contained


Figure 5.6-8 Recall Data in Detail

(3) Selecting the Recall Data Mode

Use this softkey to select FAST or NORMAL. (FAST only applies to channels 0 through 9 of the internal back-up memory)

- When FAST is selected, the save/recall list does not appear. Just press one of the numeric keypad keys (0 through 9). It is not necessary to press [RECALL | EXECUTE |

NOTE

FAST only applies to the internal memory. You cannot use FAST to recall data from the memory card.

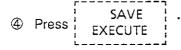
5-82 Feb 28/92

5.7 Preset and Last State Functions

The preset and last state functions allow you to switch quickly between two setting states. Access these functions with the PRESET and LAST S keys, respectively. The PRESET key resets the analyzer's settings to their factory default state, or to a user-defined state stored in the IP channel (memory location). The LAST S key resets the analyzer's settings to the values they had just before the PRESET key was pressed.

5.7.1 Preset

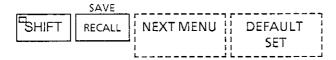
(1) Factory Default Settings


The PRESET key restores the factory default settings listed below.

Parameter	R3265 (R3271) Setting
Center frequency	4.15 GHz (13.25 GHz)
Frequency span	8.3 GHz (26.5 GHz)
Reference level	0 dBm
Sweep time	AUTO 130 ms (400 ms)
Resolution bandwidth	AUTO 3 MHz
Video bandwidth	AUTO 3 MHz
Input attenuator	AUTO 10 dB
Trigger mode	FREE RUN
Trace mode	A WRITE B BLANK
Marker	OFF
Display line	OFF
Label function	OFF
Vertical axis scale	10 dB/div

5-83

(2) Storing a User-Defined Preset State	
① Enter the settings you want.	
© Press SHIFT RECALL.	
Back-up memory data is listed.	

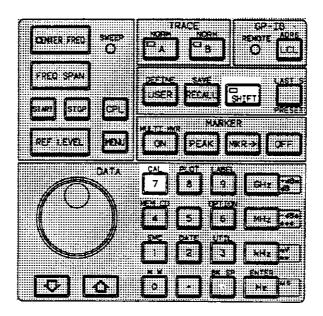

3 Select channel IP with the cursor.

Hereafter, the analyzer will be set to the state you defined when you press

(3) Canceling a User-Defined Preset State Press the following keys:

5.7.2 Last State

To restore the analyzer to the state it was in just before PRESET was pressed, press the following keys:


NOTE

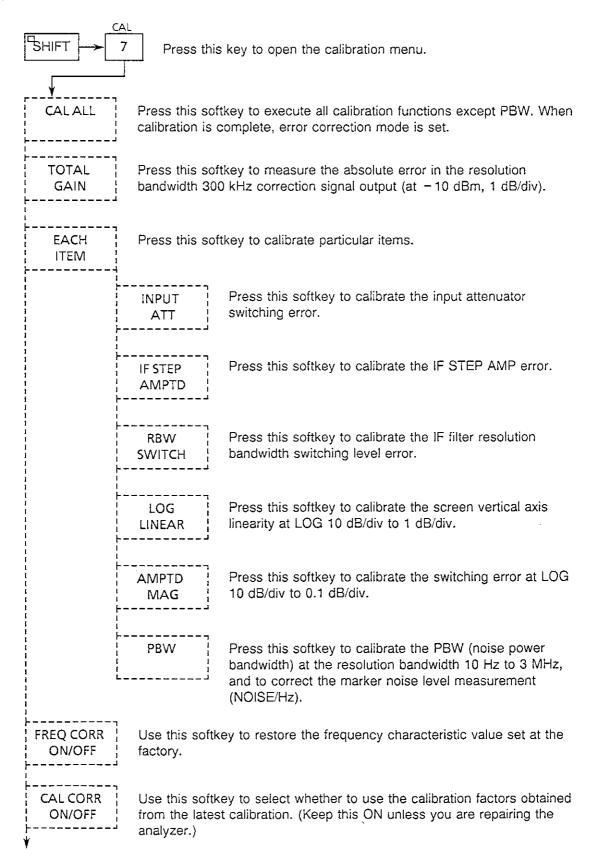
The state when the analyzer's power is turned OFF remains when the power is turned ON again.

5-84 Feb 28/92

5.8 Calibration Function

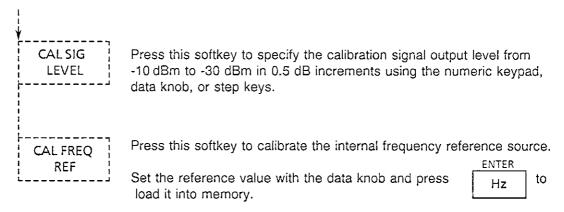
The calibration function lets you fine tune the amplitude section of the analyzer to improve its accuracy. (You should also return the analyzer to an Advantest service center once a year for a complete calibration and performance check.)

(1) Calibration Items


The calibration function adjusts the following:

- Absolute error in the resolution bandwidth 300 kHz correction signal output (-10 dBm, 1 dB/div)
- IF filter switching level error in the resolution bandwidth 10 Hz to 3 MHz
- Screen vertical axis linearity in LOG 10 dB/div, 5 dB/div, 2 dB/div, and 1 dB/div
- Switching error in LOG 10 dB/div to 0.1 dB/div
- IF step AMP switching error
- · Input attenuator switching error
- PBW (noise power bandwidth)

NOTE


- 1. Before calibrating the analyzer, let it warm up for at least 60 minutes.
- Before using the CAL key, connect the CAL OUT output connector on the front panel to the RF input on the front panel with a cable such as the MC-61 10 cm cable.

(2) Calibration Menu

5-86

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

The accuracy of the frequency reference is 2×10^{-7} /year.

5.9 Plotter Functions

The plotter functions let you use a variety of plotters with the analyzer. You can plot up to four waveforms or tables on a page and use up to eight pens to plot different display elements in different colors. You can use the panel keys while the plotter operates.

(1) Compatible Plotters

Connect the plotter to the analyzer with a GPIB cable as shown in Figure 5.9-1. Table 5.9-1 lists plotters that are compatible with the analyzer.

Table 5.9-1 Compatible Plotters

Manufacturer	Plotter
ADVANTEST	R9833
HP	HP7470A, HP7475A, HP7440A, HP7550A

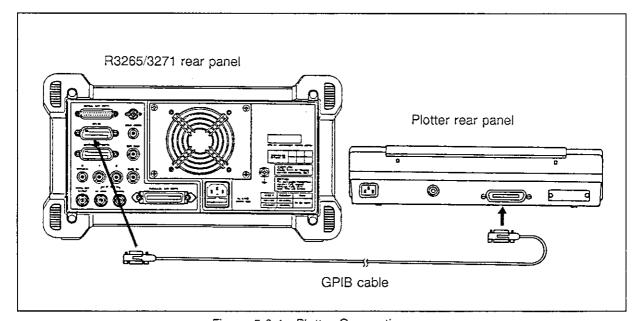


Figure 5.9-1 Plotter Connection

- CAUTION

- 1. Before connecting the GPIB cable, turn off the analyzer and plotter.
- 2. Make sure you know how to operate the plotter.

(2) Setting Up the Plotter

Set the plotter address to Listen Only mode or 0 to 30. (Refer to the plotter's instruction manual for instructions.) Make sure you assign the plotter to an unused GPIB address. Other settings may be required depending on the plotter type.

For example, to set the Advantest R9833 plotter to use A4 size paper (Listen only mode) in the lateral direction, set the DIP switches as shown.

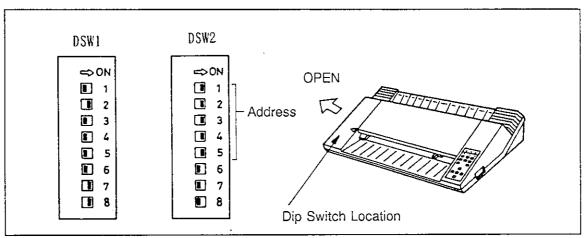
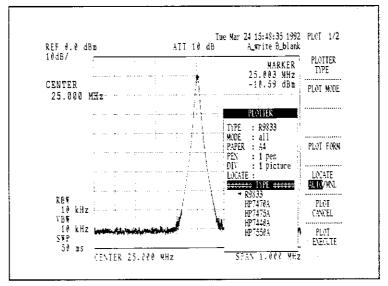
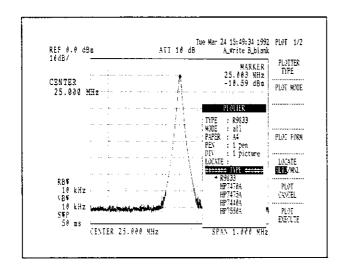


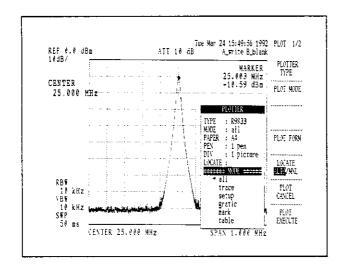
Figure 5.9-2 Example Dip Switch Setting

(3) Using the Plotter

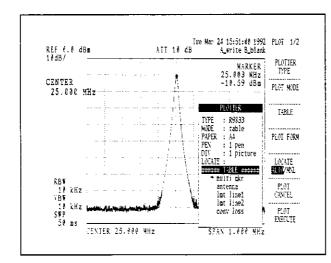
① Plotter Operation Window

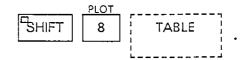
The following plotter operation window appears. You will use this window to control the plotter, as described below.

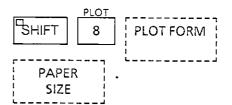

Figure 5.9-3 Plotter Operation Window

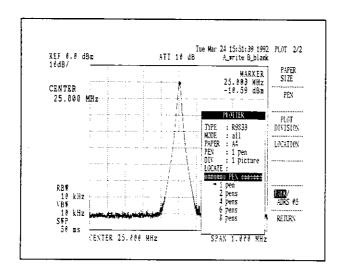

Select the plotter model. Press

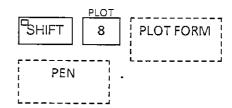

Press the PLOTTER TYPE softkey to move the cursor (\rightarrow) down the list.

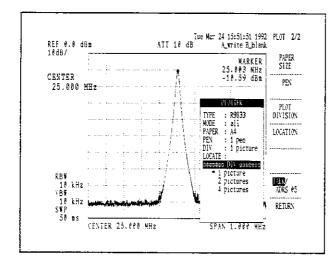

Select the plot mode. Press

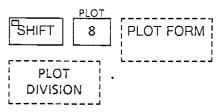
If you select table mode, also select the table type as described in step 4.

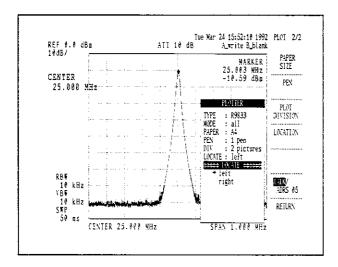

Select the table type. Press


The table key only appears if you already selected table as the plot mode.


Select the plotter paper size. Press

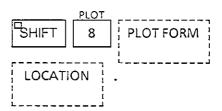

Press the PAPER SIZE softkey to move the cursor (\rightarrow) down the list.


6 Select the number of pens. Press

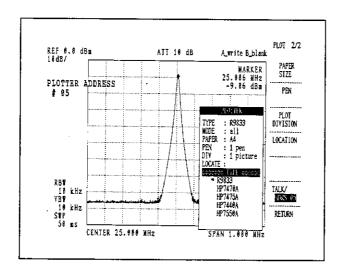

Press the PEN softkey to move the cursor (\rightarrow) down the list.

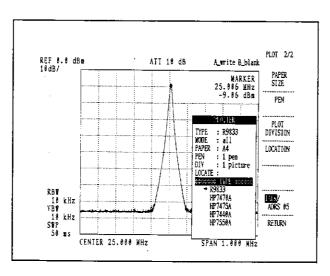
Select the number of plots per page. Press

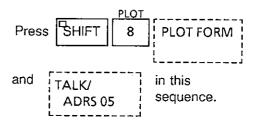
Press the PLOT DIVISION softkey to move the cursor (→) down the list.



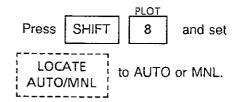
(Specified to be divided into two parts.)


(Specified to be divided into four parts.)


Select which part of the page to plot on next if you are making more than one plot per page. Press


Press the LOCATION softkey to move the cursor (→) down the list.

The choices differ depending on whether you are making two or four plots per page.



Switching the talk only output/ addressing output

And set the talk only output or the addressing output.

- If the addressing output is selected: specify the plotter address with the numeric, step keys and data knob.
 Also, set the plotter to the same address.
- If the talk only output is selected: Set the plotter to the listen only mode.
- Auto/Manual Selection of the Plot Position on the Page

Select AUTO to consecutively plot all positions on the page.

① Plotting

Plotting begins using the settings you've made, and the display returns to the normal screen.

You can use the front panel keys while the plotter is working. However, you cannot begin another plot until the first one finishes. An error message appears if you attempt this, as shown below.

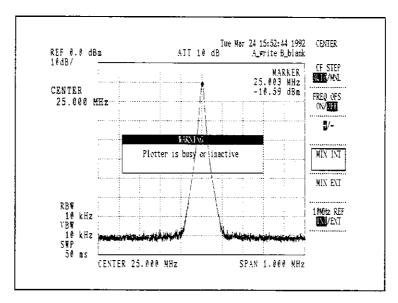


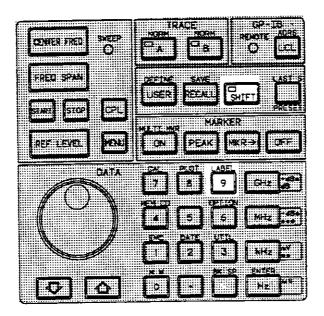
Figure 5.9-4 Plotter Error Message

Canceling the Plot

Note that if the plotter has a built-in buffer, the data in the buffer is plotted before the plotter stops.

NOTE

- 1. Be sure to read the plotter's instruction manual for more information.
- 2. The analyzer is compatible with plotters based on the HP-GL. Set your plotter to the correct mode.
 - Note that some plotters may not be capable of printing multiple plots on a page. For example, the HP7470A cannot print two plots on a page.
- 3. If you are using an HP7475A plotter, set its DIP switch to US/A4 or US/A3 paper size.

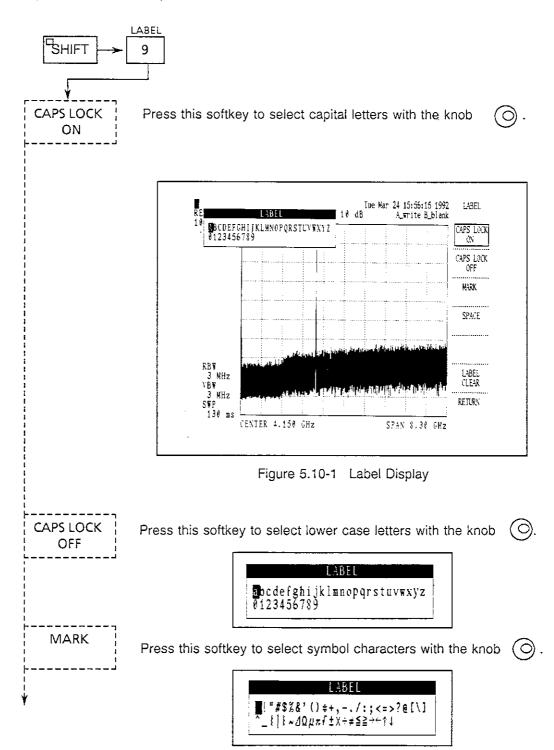

Table 5.9-2 Plotter Pen Assignments

1-pen mode	Pen 1	Frame, marker, window, limit line, characters, display line, waveform A, and waveform B
2-pen mode	Pen 1 Pen 2	Frame, marker, window, limit line, waveform B Waveform A, characters, display line
4-pen mode	Pen 1 Pen 2 Pen 3 Pen 4	Frame Display line, marker, window, limit line, characters Waveform A Waveform B
6-pen mode	Pen 1 Pen 2 Pen 3 Pen 4 Pen 5 Pen 6	Frame Marker, characters Waveform A Waveform B Display line Window, limit line
8-pen mode	Pen 1 Pen 2 Pen 3 Pen 4 Pen 5 Pen 6 Pen 7 Pen 8	Frame Marker, characters Waveform A Waveform B Display line (Unused) Window Limit line

5-95

5.10 Label Function

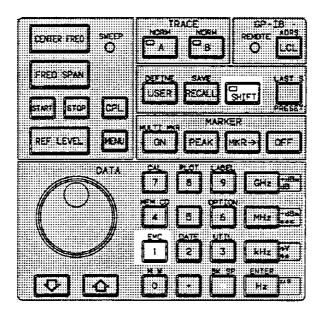
The label function lets you create a label for on-screen display. If you save the trace, the label is stored with the trace. (The label is different than a trace's title, which appears in the save/recall list.)


(1) Labeling Procedure

1	Press SHIFT 9 he label window appears for you to select characters.			
2	Label input position can be changed with the step key. When is pressed, the			
	cursor moves right. When pressed, the cursor moves left.			
3	The character which wants to be input is set with the data knob. Use the data knob to			
	ENTER			
	select a character, and press Hz to load the charactor.			
Note1: When the input character is correct or delet, press				
No	te2: If you press a key and hold it, the key repeats.			

5-96 Feb 28/92

(2) The Label Menu


To open the label menu, press

SPACE	Press this softkey to enter a space.
LABEL CLEAR	Press this softkey to delete the entire label.
RETURN	Press this softkey to return to the previous menu.

5.11EMC Function

The Electro-Magnetic Compatibility (EMC) function lets you use the analyzer as a receiver.

This lets you make the following common EMC measurements:

- Intensity of electric field interference (using an antenna)
- Voltage of the power source terminal (using a quasi-power source circuit)
- Interfering power (using an absorption clamp)

For a detailed explanation of EMC measurements, see the "EMI/EMC Measurement System Guide Book" available from Advantest.

(1) Antenna Factor Correction Use this function to correct the antenna factor used when measuring electric field intensity with an antenna. The analyzer calculates the correction factor and the level appears in $dB\mu$

ANTENNA

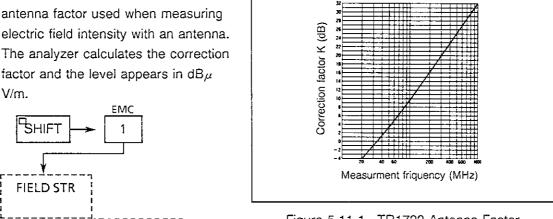


Figure 5.11-1 TR1722 Antenna Factor

DIPOLE LOG PERD TR17203 **ANTENNA** OFF

Press this softkey to correct the halfwavelength dipole antenna factor (TR1722).

Press this softkey to correct the logarithmic cycle antenna factor (TR1711).

Press this softkey to correct the active antenna factor (TR17203).

Press this softkey to cancel all antenna factor corrections.

Note: the above-mentioned antenna corrections compensate for loss from a 5D2W 10 M cable.

ANTENNA CORR

Press this softkey to create a custom antenna factor as explained in paragraph (3), Limit Line Function, below.

ANT CORR ON/OFF

LVL CORR

ON/OFF

Use this softkey to turn the antenna correction factor ON or OFF. When ON, the correction factor is added to the current WRITE trace (units are in dB_{μ} V/m).

Use this softkey to turn the level correction ON or OFF. This mode uses the units specified in the UNITS menu.

Feb 28/92 5-100

(2) Selecting Detection Mode

This function lets you select the detection mode defined by CISPR (an international standards organization) specifications.

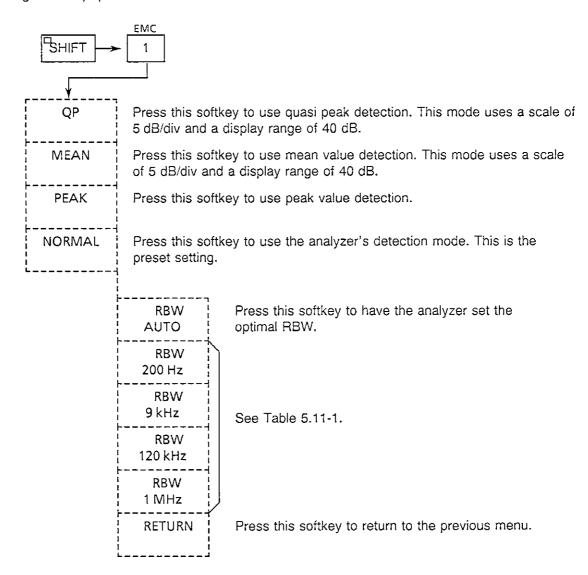


Table 5.11-1 The CISPR Specifications for RBW

٨	Measurement Bandwidth	RBW (6 dB bandwidth)	Sweep Time Setting
Α	10 kHz to 150 kHz	200 Hz	1 sec per 200 Hz frequency span
В	150 kHz to 30 MHz	9 kHz	1 sec per 10 kHz frequency span
С	30 MHz to 300 MHz	120 kHz	1 sec per 100 kHz frequency span
D	300 MHz to 1 GHz	120 kHz]

(3) Limit Line Function

This function displays a border that shows the spectrum's upper limit or lower limit. This enables you to compare data to these limits.

① Data table Description

Two limit lines can be used: limit line 1 and limit line 2.

You can select either the frequency domain or the time domain (for zero span mode) for each limit line.

You can enter up to 51 data points (specifying frequency and level for each) for each limit line. The frequency data must be in the range from 0 Hz to 999.999 GHz, the time data must be in the range from 0 s to 1000 s, and the level data must be in the range from -240 dBm to 100 dBm. The level data can also be entered in the same units as the reference level (except for the units V and W).

Enter data in input mode, and modify data in modify mode.

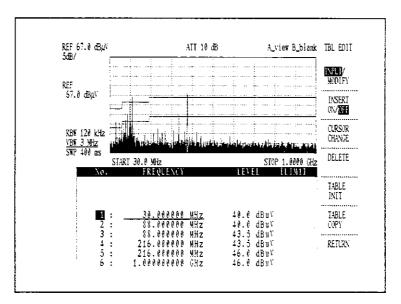
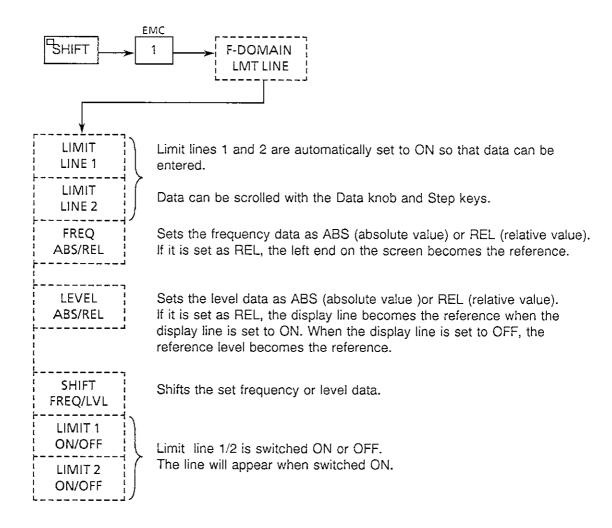



Figure 5.11-2 Entering a Limit Line

2 Limit Line Menu

2-1 Frequency domain data input

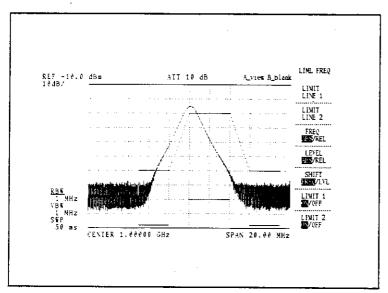
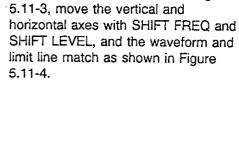



Figure 5.11-3 The displayed waveform and limit line do not match

If the displayed waveform and limit line do not match as shown in Figure

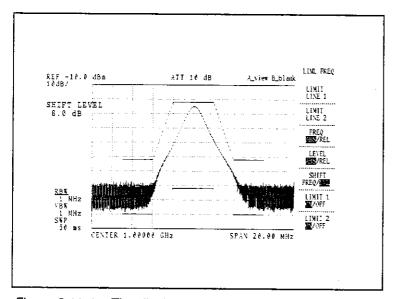
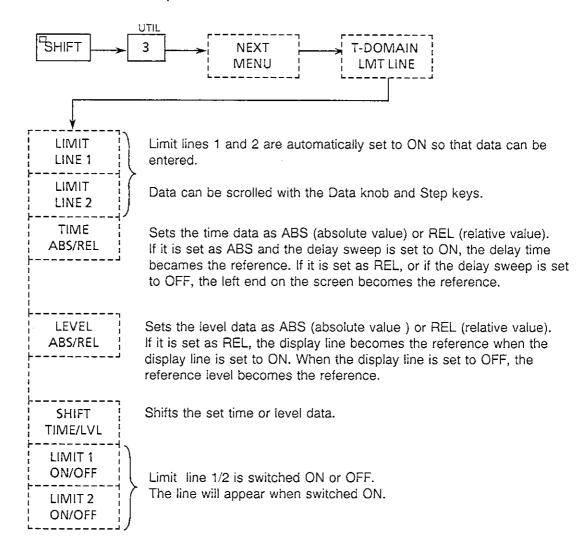



Figure 5.11-4 The displayed waveform and limit line match

2-2 Time domain data input

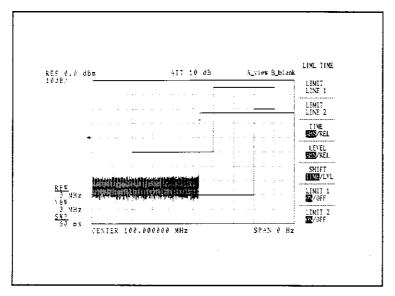


Figure 5.11-5 The displayed waveform and limit line do not match

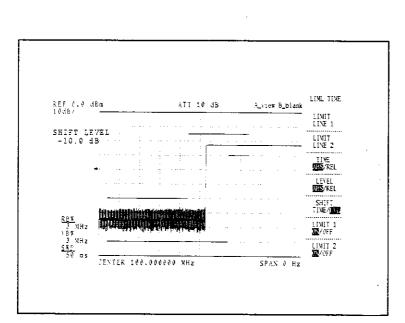
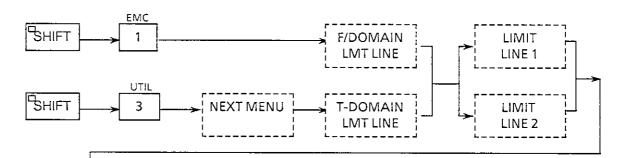
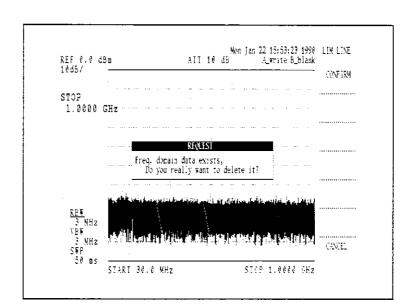
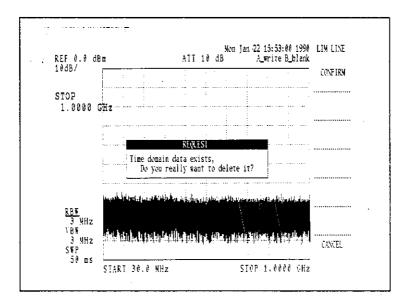




Figure 5.11-6 The displayed waveform and limit line match

If the displayed waveform and limit line do not match as shown in Figure 5.11-5, move the vertical and horizontal axes with SHIFT FREQ and SHIFT LEVEL, and the waveform and limit line match as shown in Figure 5.11-6.

2-3 Making a limit line table



The message shown above appears when you try to enter time domain data after entering frequency domain data.

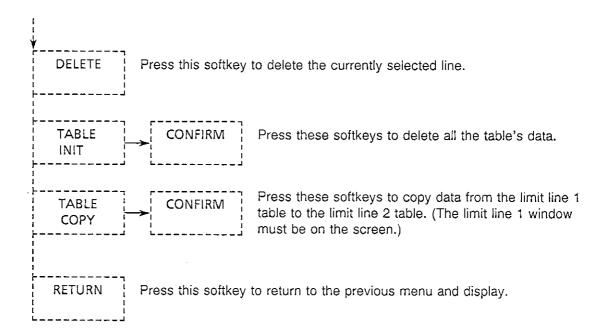
Press CONFIRM to enter the data and delete the frequency domain data.

5-107 Feb 28/92

The message shown above appears when you try to enter frequency domain data after entering time domain data.

Press CONFIRM to enter the data and delete the time domain data.

INPUT/ MODIFY Use this softkey to switch between input mode and modify mode. You can then enter or modify the item underlined.


In input mode, enter frequency or time data, then level data. Each data point is defined by a frequency or time and a level. The data entered is sorted in ascending order by frequency or time.

In modify mode, modify the frequency or level. The data is then re-sorted.

INSERT ON/OFF Use this softkey to insert a line at the cursor for data entry.

CURSOR CHANGE Press this softkey to move the input cursor between frequency or time and level.

5-108 Feb 28/92

Feb 28/92

(4) Measuring the Power Source Terminal Voltage

Use a quasi-power source circuit to measure the power source terminal voltage as follows:

① Connect the signal source to be measured (the DUT) as illustrated in Figure 5.11-7.

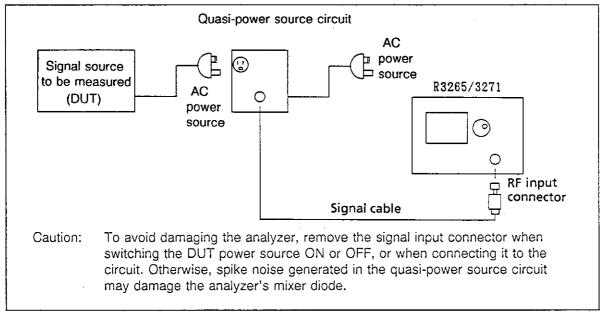
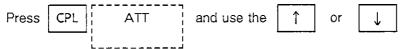



Figure 5.11-7 Measuring the Power Source Terminal Voltage

Enter the start and stop frequencies to be measured. For example, if the start frequency is 150 kHz and the stop frequency is 10 MHz, you would press

Make sure the waveform level does not vary when you increase or decrease the attenuator by 10 dB. If it does, the analyzer's input stage is saturated, and you must increase the attenuator value or insert a band pass filter in the input.

step keys to vary the attenuator setting by 10 dB and confirm that the level does not vary.

4	Press REF LEVEL and use the knob oto set the signal at the reference level.
6	Specify the QP resolution bandwidth.
	Press SHIFT 1 QP BW .
	The resolution bandwidth (9 kHz) and the charge and discharge constant are automatically selected.
	Notes: 1. If the start and stop frequency are specified in multiple measurement regions, the resolution bandwidth is automatically selected according to the stop frequency. 2. In QP mode, 5 dB/div is automatically set.
6	Set the sweep time according to Table 5.11-1. Press CPL SWP and adjust the data with the or step keys.
7	The sweep time should be large (about 1000 seconds). Set the marker on the screen to read the data, and correct the data with the correction
	factor corresponding to the quasi-power source circuit: MULTI MKR Press ON and move the marker with the knob .
8	Cancel QP measurement mode (this sets REF mode).
	Press SHIFT 1 NORMAL to cancel.

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

5.12 Date Function

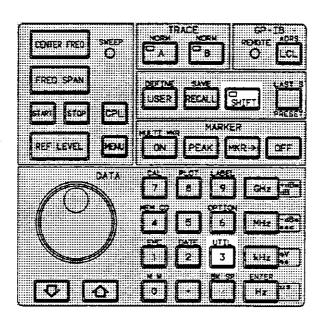
Use the date function to set the year, month, date, and time for display. You can also change the date's display format. You can set the date to any day from January 1, 1989 to December 31, 2088 (leap years included). The date function automatically determines the day of the week. The time is displayed using the 24-hour system.

To use the date function, press SHIFT 2. The following menu appears.

SHIFT	DATE 2
YEAR	Press this softkey to enter the year. Use the numeric keypad to enter the last two digits of the year.
MONTH	Press this softkey to enter the month. Use the numeric keypad to enter a value from 1 to 12 (January = 1, December = 12).
DAY	Press this softkey to enter the date. Use the numeric keypad to enter a value from 1 to 31.
HOUR	Press this softkey to enter the hour. Use the numeric keypad to enter a value from 0 to 23.
MIN	Press this softkey to enter the minute. Use the numeric keypad to enter a value from 0 to 59.
SEC ADJ	Press this softkey to zero the seconds while the clock is running. If the clock reads from 0 to 29 seconds, it resets to 0 seconds. If the clock reads from 30 to 59 seconds, it resets to 0 seconds and adds a minute.
ON(1/2/3) /OFF	Use this softkey to select a display format: OFF: the date is not displayed ON 1: uses the format Mon Jan 1 02:10:00 1990 ON 2: uses the format Mon Jan 1 02:10, 1990

ON 3: uses the format Mon Jan 1 1990

5-112 Feb 28/92


5.13 Utility Function

The utility function provides special features for making occupied bandwidth (OBW) and adjacent channel leak power (ADJ) measurements.

When making an OBW measurement, you center the signal of interest and enter the percentage of signal power you want to mark. The analyzer then marks the bandwidth within which that percentage of the signal lies. The delta marker shows the bandwidth value.

When making an adjacent channel leak power measurement, you specify a bandwidth and the spacing of communication channels within that bandwidth. When you then input a signal, the analyzer calculates the ratio of the power in the upper and lower channels to the total signal power. You can also display a graph to show leakage in all channels. The marker shows a quantitative value.

The procedure for these measurements is described in more detail in Chapter 4, Measurement Examples.

(1) OBW and ADJ Measurements

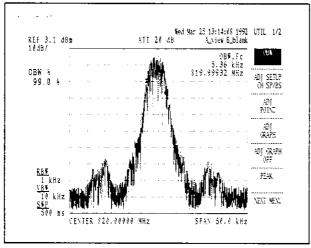


Figure 5.13-1 Waveform to Determine the OBW

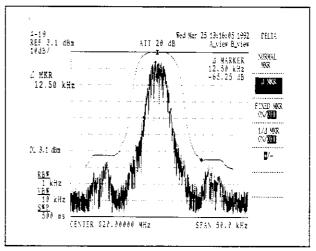
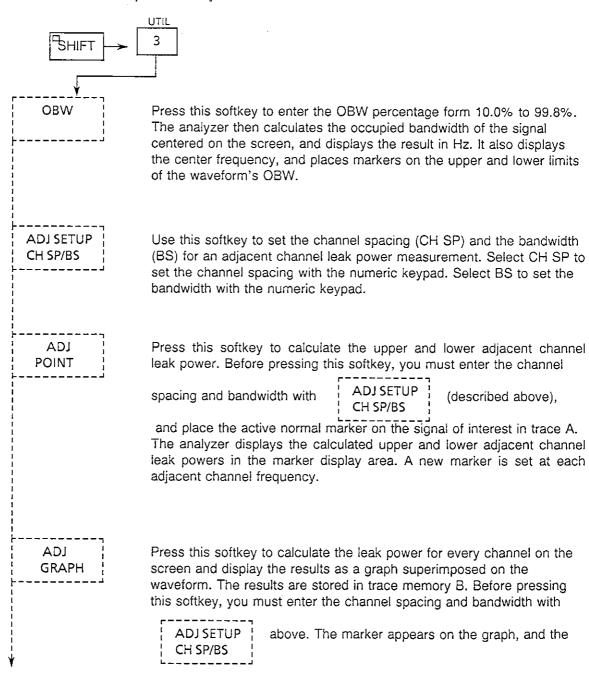
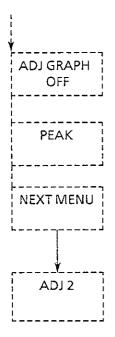



Figure 5.13-2 Adjacent Channel Leak Power in Graph


(2) Utility Menu

Press SHIFT 3 to open the utility menu.

analyzer displays the leak power of the channel it's placed on.

5-115 Feb 28/92

Press this softkey to remove the ADJ GRAPH from the display.

Press this softkey to place the active marker on the signal peak.

This is helpful for marking the carrier frequency signal before the ADJ POINT measurement.

Press this softkey to calculate the adjacent channel leak power of the centered signal two channels above and below the center frequency.

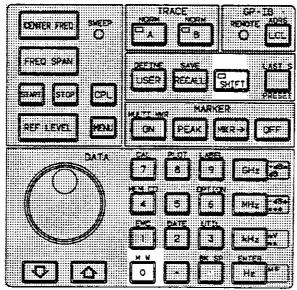
The analyzer's ADJ 2 calculation proceeds as follows: The analyzer assumes the center frequency is the carrier frequency, and determines the total signal power (PC) on the bandwidth you specified with

ADJ SETUP CH SP/BS

The analyzer then measures the power in the upper (PU) and lower (PL) adjacent channels. (The channel bandwidths are determined by the CH SP setting you made with ADJ SETUP .)

CH SP/BS

The analyzer calculates the ratios of PU to PC and PL to PC, and displays the results on the screen labeled UP and LOW. A marker appears at each channel frequency.


NOTE

- Before pressing ADJ 2, you must center the carrier frequency, and enter the channel spacing and bandwidth with the ADJ SETUP softkey.
- 2. After the ADJ 2 calculation is complete, the span changes to three times the channel spacing.

5-116 Feb 28/92

5.14 Measurement Window Function

The measurement window function lets you sweep and search for peaks within a specified area of the display. This enables you to make measurements more quickly than you could by sweeping the entire span.

M W : Measure Window

(1) Measurement Window Menu

Press SHIFT 0 to open the measurement window menu.

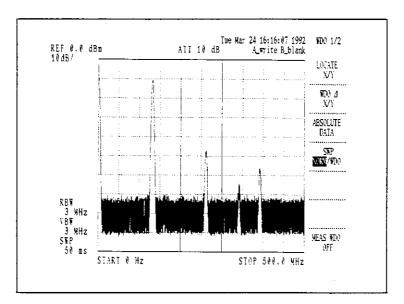
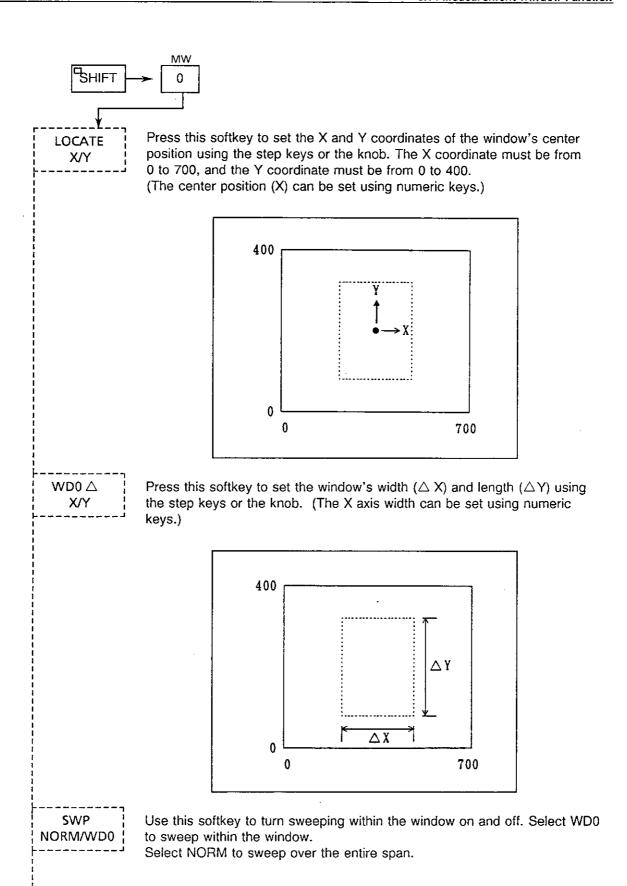



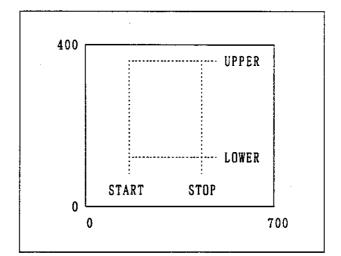
Figure 5.14-1 Initial Screen of the Measurement Window

ABSOLUTE DATA Press this softkey to set the window size using absolute start and stop frequencies and upper and lower amplitude levels.

MEAS WDO START MEAS WDO STOP MEAS WDO

UPPER

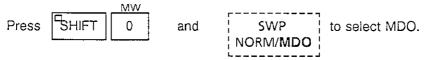
MEAS WDO


LOWER

Press this softkey to set the start frequency using the step keys or the knob.

Press this softkey to set the stop frequency using the step keys or the knob.

Press this softkey to set the upper level using the step keys or the knob.


Press this softkey to set the lower level using the step keys or the knob.

MEAS WDO OFF Press this softkey to remove the window from the display and cancel the sweep within the window.


(2) Measurement Window Example

① Partial Sweep Within the Window There are two ways to set the analyzer to sweep within a window.

Cancel this function by setting MDO to NORM.

Alternatively, you can press the following keys:

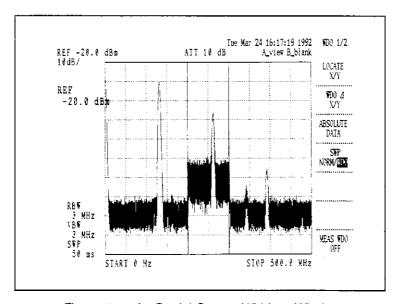
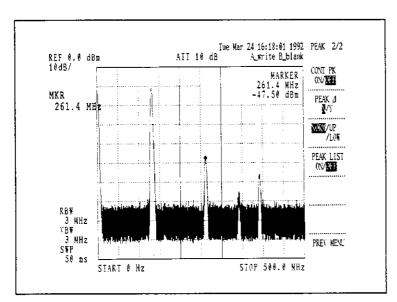
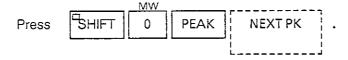


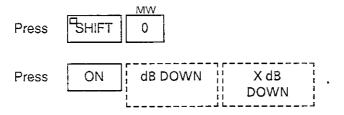
Figure 5.14-2 Partial Sweep Within a Window

2 Peak Search and Continuous Peak Search Within a Window




Figure 5.14-3 Peak Search Within a Window

To set the peak search to run continuously, press NEXT MENU and


CONT PK to select .

You can set other types of searches to operate within a window, as described below.

③ NEXT Peak Search Within a Window

Using the X dB Down Marker Within a Window

NOTE

The X dB DOWN function will not operate unless the reference marker is located within the window.

5.15 Printer Output

The R3265/3271 analyzer can output the screen display to the printer.

Table 5.15-1 Usable Printer

Maker	Printer	
Hewlett-Packard, Co.	HP2225AJ	

(1) Connecting to printer

The R3265/3271 and the printer are connected using a GPIB cable between each GPIB connector.

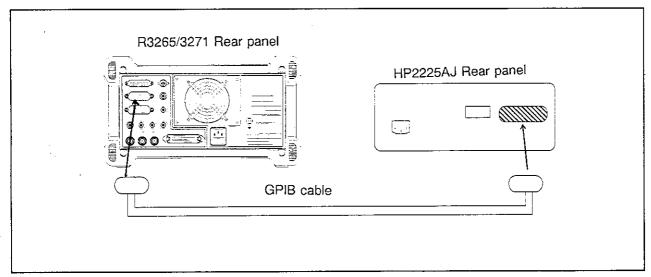


Figure 5.15-1 R3265/3271 and Printer Connection Diagram

(2) Printer address setting

The printer address should be set using the DIP switch. The printer address for the R3265/3271 side is set from the soft menu.

The address setting is shown in Figure 5.15-2.

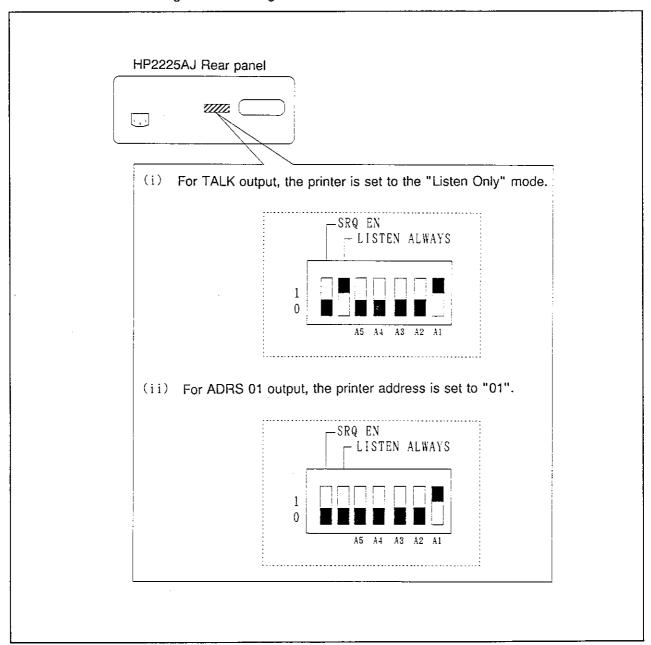
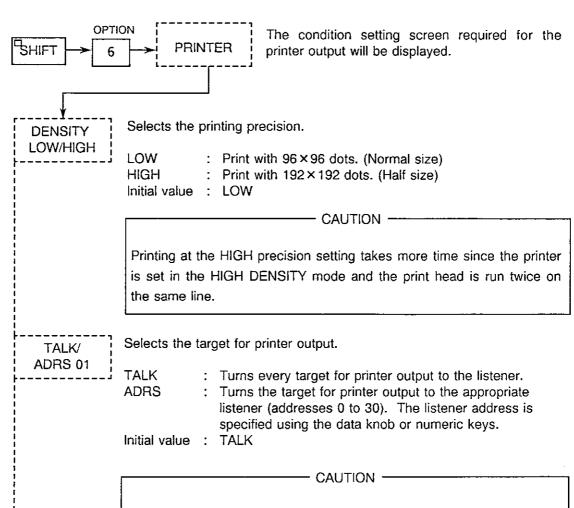



Figure 5.15-2 DIP Switch for Address Setting

- CAUTION -

- 1. For details of the GPIB, refer to sections 6.1 and 6.2.
- 2. The printer operation is explained in the printer instruction manual.

(3) Output setting menu for printer

For outputting with the TALK (TALK ONLY mode), be sure to set the printer side to the LISTEN ONLY mode. For outputting with ADRS xx (ADDRESS SPECIFICATION mode), be sure to specify the address at the printer side.

When output using the address specification, an incorrect printer address, or with the GPIB cable disconnected, the system will not operate properly. Confirm that the correct address is specified and that the GPIB cable is correctly connected.

PRINT CANCEL PRINT EXECUTE

Cancels the output during printer output.

Starts the printer output with the size specified.

(4) Example of printer output

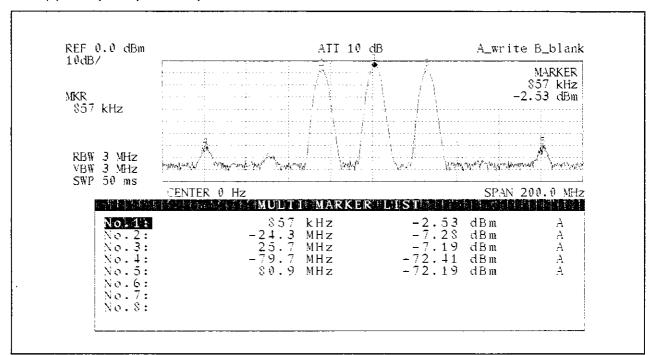


Figure 5.15-3 Printing Precision Set at LOW (Normal Size)

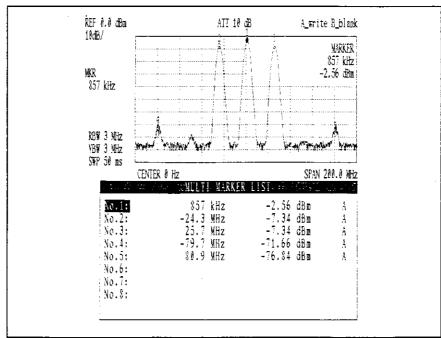


Figure 5.15-4 Printing Precision Set at HIGH (Half Size)

5.16 Average Power Measurement Functions

Measurement of power of this unit includes the following functions:

- Measurement of average power (AVG. POWER)
- Measurement of average power density (dBm/Hz)
- Measurement of total power (TOTAL POWER)

: Usable only when option 76 is installed

(1) Measurement of average power

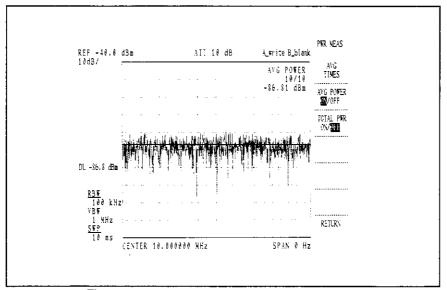


Figure 5.16-1 Average Power Measurement

5-126

The average power measurement is used to calculate the average power value for the signal displayed on the screen.

When the vertical axis represents LOG, all of the signal point data are converted into truth power dimension values to calculate the average.

When the Resolution Band Width (RBW) is much wider than the signal band width at 0 span (fixed receive), the average power can be measured accurately, even if the signal includes an AM factor.

(2) Measurement of average power density

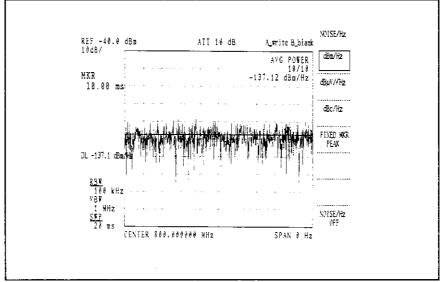
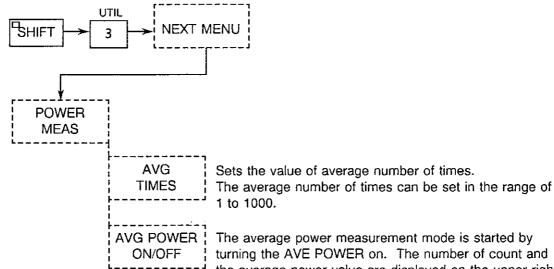
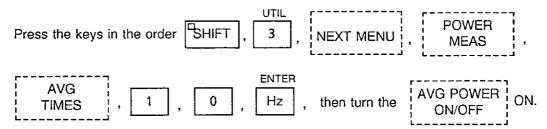



Figure 5.16-2 Average Power Density Measurement

The average power density measurement is used to calculate the power density in the specified bandwidth for the power measurement of wide band modulation waveforms such as noise or spectrum diffusion.

 To measure the average power density, turn the average power measurement mode to ON to execute the dBm/X Hz in the marker menu. Measurement is performed by entering the specified band width into X.

(3) Menu for average power measurement function


The average power measurement mode is started by turning the AVE POWER on. The number of count and the average power value are displayed on the upper right of the screen whenever the sweep is completed. The display line is displayed in the level corresponding to the average power value.

The measurement mode is ended by turning the AVG POWER off.

- In average power measurement, if the measuring window is turned on, measurement is performed in the frequency range of the window.
- After the average time has been completed (e.g. 10/10), the movement average mode is set and the measurement continues.
- If a frequency, level, average number of times, or window setting is changed during the measurement, the count will be reset and the measurement will be re-executed from the beginning.
- If the VBW is set to AUTO during the measurement,
 VBW = RBW × 10 will be set automatically. Also, the trace DET will be switched to the sample mode.

(4) Measurement procedure

① Set the average number of times to 10 and turn the average power measurement mode on.

- ② The average power measurement can also be used to measure the (a) or (b).
- (a) Measurement of the average power in the window
- (b) Measurement of the average power density with the dBm/Hz of the marker on
- (a) After turning the average power measurement mode on in procedure ①, set the measuring window to ON.

Set the
$$\begin{bmatrix} AVG \ POWER \\ ON/OFF \end{bmatrix}$$
 to ON, press the $\begin{bmatrix} SHIFT \end{bmatrix}$, $\begin{bmatrix} MW \\ 0 \end{bmatrix}$, and $\begin{bmatrix} LOCATE \\ X/Y \end{bmatrix}$ to locate the center position of the measuring window, then press the $\begin{bmatrix} WDO \triangle \\ X/Y \end{bmatrix}$ to adjust the measuring window width.

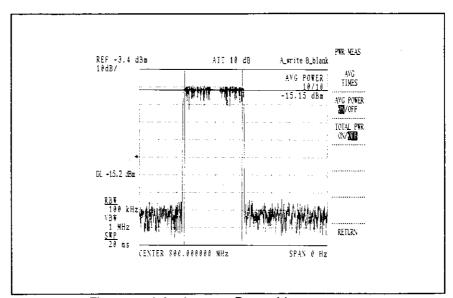


Figure 5.16-3 Average Power Measurement in Measuring Window

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

5.	16	Average	Power	Measurement	Functions

(b)	After turning the average power measurement mode on in procedure ①, set the dBm/Hz
	of the marker to ON.

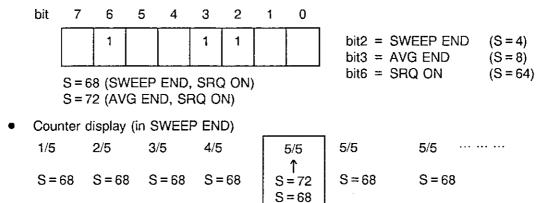
Set the AVG POWER ON/OFF to ON, then press ON, NOISE/X Hz, and dBm/Hz

(5) GPIB remote programming

GPIB command	Contents	
PWTM PWTM?	Setting of AVG times (1 to 1000 times) Read out data of AVG times.	
PWAVG ON PWAVG OFF PWAVG?	AVG POWER ON AVG POWER OFF Read out AVG POWER measurement data.	
HD0 HD1	Header OFF Header ON (at execution of PWAVG?) PWB ← at dBm PWM ← at dBmV PWU ← at dBuV PWE ← at dBuVemf PWP ← at dBpW PWV ← at Volt PWW ← at Watt	

Read out the measurement data when the SRQ signal of SWEEP END is generated. However, it is necessary to read out the data after the SWEEP reaches the AVG times (e.g. 5/5). (At this time, the SRQ of AVG END is generated.)

Status byte (S)


wait

changed.

wait

wait

wait

While the average power (AVG POWER) is being measured, take care to reset the AVG times when the CENTER, SPAN, REF LEVEL, window, or other settings have been

data read

data read

data read

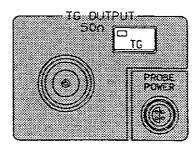
R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

5.16 Average Power Measurement Functions

Example: Measure AVG POWER in window to read data.

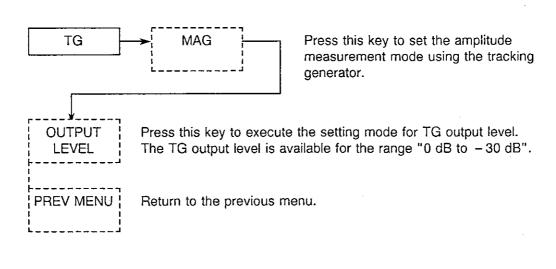
Example of programming for HP300 series (GPIB address = 8)

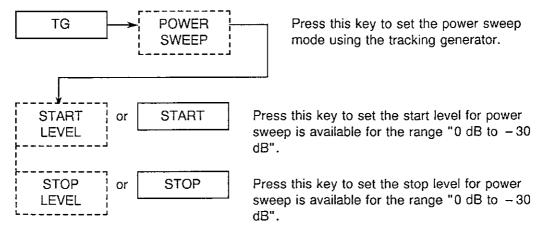
```
10
          Aend=0
20
         OUTPUT 708; "S0"
         OUTPUT 708; "CF100MZ SP10MZ"
30
         OUTPUT 708; "WDX5MZ WLX100MZ"
40
50
         OUTPUT 708; "HD0 PWAVG?"
60
         OUTPUT 708; "PWTM 5ENT"
70
         OUTPUT 708; "PWAVG ON"
80
         ON INTR 7 GOTO Srgint
90
        Wloop:1
100
         ENABLE INTR 7;2
110
         GOTO Wloop
120
         1
130
        Srqint:!
140
        S=SPOLL(708)
         IF BIT(S,3)=1 THEN Aend=1
150
         IF BIT(S,2)=1 THEN GOSUB Avgout
160
170
         GOTO Wloop
180
190
        Avgout: I
         IF Aend=0 THEN RETURN
200
210
         ENTER 708;A
         PRINT A
220
         RETURN
230
240
         1
250
         END
```


Explanation of program

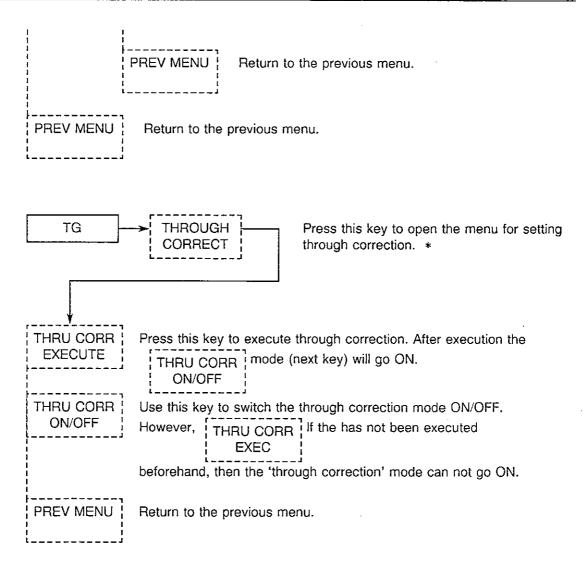
```
10
         Clear AVG END flag.
20
         Set to SRQ interrupt output mode.
30
         Center frequency=100MHz, span=10MHz
40
         Window width=5MHz, window center=100MHz
50
         Specify header OFF and output data to AVG data.
60
         Set AVG time to 5times
         AVG POWER ON
70
80
         Specify position to jump on occurrence of SRQ interrupt.
90
         Wait for SRQ interrupt (loop).
         Jump with SRQ interrupt.
130
140
         Execute serial pole.
150
         Turn AVG END flag ON if AVG END (bit 3=1).
         Read out data if SWEEP END (bit 2=1).
160
         Read AVG data.
210
```

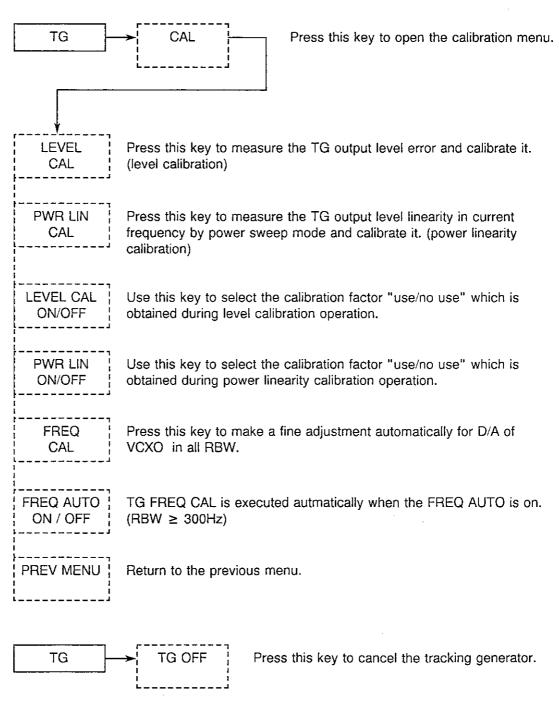
5.16 Average Power Measurement Functions


0	OUTPUT 708;"HD0 NI 1Hz,NIM,ML?"	


5.17 Tracking Generator Functions (R3365/3371 only)

TG


Press this key to set the amplitude-mesurement mode using the tracking generator, and open the tracking generator menu screen. In this case, the amplitude measurement mode or the power sweep mode was already set, execute to only display the menu screen.


5.17 Tracking Generator Functions (R3365/3371 only)

SWEEP TIME	Press this key to set the SWEEP TIME is available for the range "200ms to 1000s".		
SMOOTHING ON/OFF	Use this key to execute the smoothing for input signal synchronizing with sweep. The count of smoothing is available for "2 to 100". In this case, SWEEP TIME is automatically set the suitable value.		
REF. LINE	Press this key to display the menu screen for setting the reference line.		
	The reference is a standard line to compare the level for power waveform.		
1 1 1 1 1 1 1	REF. LINE ON/OFF	Use this key to display/delete the reference line.	
1 1 1 1 1 1 1 1 1	X/Y dB	Press this key to set the slope of reference. The setting value is a vertical axis ratio to horizontal axis. The initial value is "1".	
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	OFFSET	Press this key to set the vertical OFFSET of reference line. The OFFSET is available for the range " – 100 dB to + 100 dB". The initial value is "0".	
t t l l l	PREV MENU	Return to the previous menu.	
PxdB MKR	Press this key	to display the menu for setting PxdB MKR.	
	PxdB MKR EXECUTE	Press this key to display the Marker under X dB from the reference line.	
	PxdB CONT ON/OFF	Set this key to ON to execute the PxdB MKR each sweep.	

* : This normalizes over the full frequency range of the Tracking Generator. Therefore ofter this normalization any changes to the span frequency, center frequency, and reference level will not mean that a further normalization is necessary.

5.17 Tracking Generator Functions (R3365/3371 only)

CAUTION

Before using the calibration function, let the analyzer warm up for at least 60 minutes.

MEMO @

6. GPIB: REMOTE PROGRAMMING

6. GPIB: REMOTE PROGRAMMING

The R3265/3271 analyzer includes a general-purpose interface bus (GPIB) that enables you to run the analyzer from a remote controller or computer. This chapter explains how to do this.

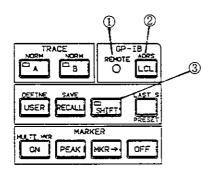
6-1

6.1 Overview of the GPIB

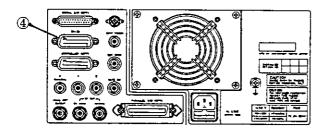
6.1 Overview of the GPIB

You can control the R3265/3271 analyzer with any remote controller or computer that uses an IEEE Standard 488-1978 (GPIB) interface. This enables you to run the analyzer remotely, and to use the analyzer to run fully or partially automated tests.

You can use the GPIB controller to do the following:


- ① Set measurement conditions (enter the measurement conditions as you would from the front panel)
- Read (or query) existing settings and data
- Send and receive measurement data (including screen trace, data write, and read out)
- Send service requests to the controller (this interrupts the controller's current task and reads the status byte)

The analyzer's GPIB is fully compatible with any product that meets the IEEE 488-1978 standard. The GPIB bus allows you to connect the analyzer to other GPIB devices more easily than you can using single bus cables, making it easier to construct or modify high-grade measuring systems.


Each device on the GPIB can be assigned the role of controller, talker (sender), or listener (receiver). Devices commonly change roles while the system is operating, although there can only be one controller. Only one device can "talk" at a time, though multiple devices can "listen." The controller specifies the talker and listener addresses and transfers data from the talker to the listener. The controller itself can also play the role of talker, and can specify listener measurement conditions.

6-2

GPIB panel switches

Front Panel

Rear Panel

- Remote lamp
 This lamp lights when the analyzer is set to External control mode.
- CLCL key This key switches the analyzer between Remote and Local control (allowing you, for example, to interrupt external control and enable input from the front panel).
- SHIFT key This key, with the LCL key, specifies the GPIB address.
- GPIB connector
 This terminal connects the analyzer to the external controller or to a plotter.

6.2 GPIB Specifications

(1) GPIB Bus. The following figure shows the configuration of a typical GPIB system, in this case with four devices.

The GPIB bus cables include eight data lines, three transfer control lines (handshake lines), and five bus control lines. These lines function as follows:

- Data lines: these bit-parallel, byte-serial data lines provide asynchronous, bi-directional data transfer between devices. This allows the GPIB system to use high-speed and low-speed at the same time. Data is transferred as ASCII code.
- Transfer control lines (handshake lines): these control the asynchronous data transfer between devices, and use the following signals:

DAV (Data valid) : indicates the data valid state (low state)

NRFD (Not ready for data) : indicates that data can (high state) or cannot (low state) be

received

NDAC (Not data accepted) : indicates that data has (high state) or has not (low state)

been received

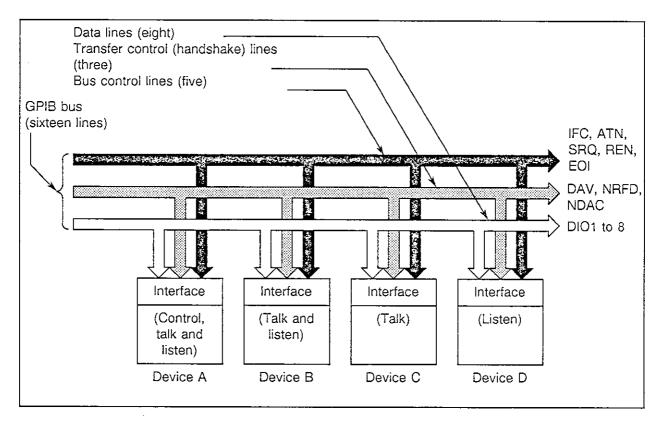


Figure 6.1-1 GPIB Bus Configuration

Bus control lines: these control the flow of information through the bus, and use the following signals:

ATN (Attention):

determines whether the signal on the data line is a command or

other information

IFC (Interface clear):

clears the interface

EOI (End of identify):

signals the completion of information transfer

SRQ (Service request): makes a service request to the controller

REN (Remote enable):

enables remote control of a device

(2) Connector: The analyzer has a 24-pin GPIB connector, Amphenor product number 57-20240-D35A or its equivalent. The following figure shows the connector and its pin assignments.

> 6-4 Feb 28/92

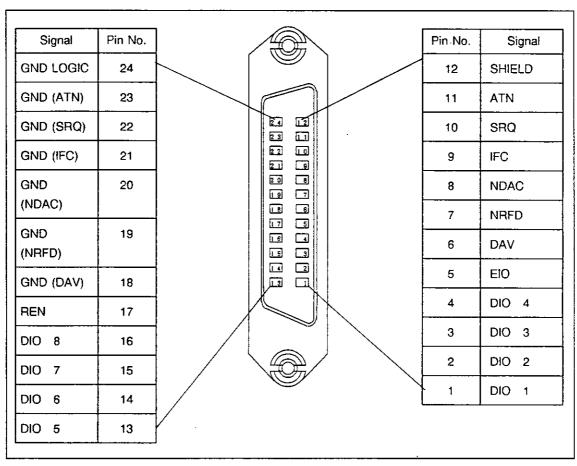


Figure 6-2 GPIB Connector Pin Assignment

(3) Specifications

Code

: ASCII, except for packed formatting (which uses binary code)

Logic level

: Logical 0 High state +2.4 V or above

Logical 1 Low state +0.4 V or below

Signal line termination

all sixteen bus lines are terminated as shown below.

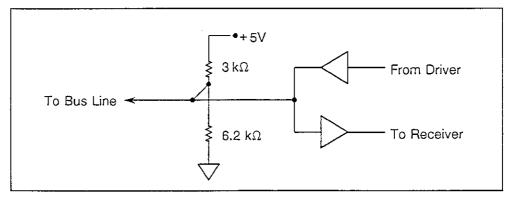


Figure 6-3 Signal Line Termination

6.2 GPIB Specifications

Driver

Open collector type

Output voltage at Low ... + 0.4 V or below, 48 mA

at High.... +2.4 V or above, -6.2 mA

Receiver

+0.6 V or below ..."Low" state

+2.0 V or above ... "High" state

Bus cable length:

Connect one device for every four meters of cable you use. The total

length of cable connected to the bus must be less than 20 meters.

Addresses

Assign a unique talk/listen address (0 through 30) to each device on the

bus using the front panel keys. Each device on the bus must have a

unique address.

(4) Interface Function: Table 6-1 describes the GPIB codes used by the analyzer.

Table 6-1 Analyzer GPIB Interface Codes

Code	Description		
SH1	Source handshake function		
AH1	Acceptor handshake function		
Т6	Basic talker function, Serial pole function, Talker cancel function by listener specification		
L4	Basic listener function, Listener cancel function by talker specification		
SR1	Service request function		
RL1	Remote function		
PP0	No parallel function		
DC1	Device clear function provided		
DT1	Device trigger function provided		
C0	No controller function		
E1	Used open collector bus driver; however, EOI and DAV is used a three state bus driver.		

6.3 Initializing the Analyzer

Before you use the analyzer with a GPIB system, you must initialize it as described below.

6.3.1 Setting the Analyzer's GPIB Address

Set the analyzer's GPIB address (0 through 30) using front panel keys.

Example: To set the analyzer's GPIB address to 1:

Press SHIFT LCL 1 GHz

6.3.2 Defining the Delimiter

When sending data from a controller to the analyzer, use one of the delimiter codes described below to define the symbol that will be used as a message terminator: carriage return (CR), line feed (LF), or end or identify (EOI). When the analyzer sends data to the controller, one of the delimiters given below is selected.

Table 6-2 Delimiter Specification Codes

Code	Description	
DLO	Outputs CR and LF, also outputs EOI signal together with LF	
DL1	Outputs LF	
DL2	Outputs EOI signal together with the data end byte	
DL3	Outputs CR and LF (initial value)	
DL4	Outputs LF and also EOI signal together with LF	

6.4 Command Syntax (Listener)

This section describes the syntax you must use to send GPIB commands to the analyzer.

The general syntax for a command is this:

<command > < separator > < device address >; < data >

Where:

- <command> is the code for the command you want to use. Section 6.8 lists all GPIB command codes available for the analyzer.
- <separator> is a space or a comma. All commands must be separated by a space or a comma:

CF SP -- Correct

CFSP -- Incorrect

6.4 Command Syntax (Listener)

 <data> is the data associated with the command. Note that numeric data do not need to be separated from commands:

CF 300 MZ -- Correct CF300MZ -- Correct

When sending commands you must also obey the following restrictions:

- Do not use binary numbers (excluding the trace binary input).
- Use the carriage return (CR) and line feed (LF) as data delimiters.
- Do not enter data that is not specifically defined as a GPIB code or a syntax error will occur.

Sections 6.4 through 6.7 give programming examples using the HP200 or 300 series computers manufactured by Hewlett-Packard. Read your computer manual for specific information about applying these examples to your system. In these examples, note that each program line that uses a command also specifies the GPIB address of the device the command is being sent to. These examples also assume the analyzer has been initialized.

For example, to set the analyzer's center frequency to 300 MHz, you would send the following:

OUTPUT 7 01; "CF 300MZ" ↑ ↑ ↑ ↑ ↑ *1 *2 *3 *4 *5	*1 Specifies the controller as the talker *2 GPIB interface selector *3 Specifies the analyzer (GPIB address 01) as the listener	
^1 ^2 ^3 ^4 ^5	*4 Sets the center frequency active *5 Sets the center frequency to 300 MHz	

In these examples, "CF" and "MZ" are GPIB command codes. See Section 6.8 for a complete list of GPIB codes.

HP200 and 300 series programming examples (GPIB address = 1)

Example 6-1:	Reset the analyzer master ke	ey and set the center frequency to 25 MHz.		
10 OUTPUT 701;"IP"				
20 OUTPUT 701;"CF25MZ"				
30 END				
Example 6-2:	Set the start and stop freque 50 kHz to the frequency offs	encies to 300 kHz and 800 kHz, respectively, and add et.		
10 OUTPUT 701;"FA300KZ"				
20 OUTPUT 701;"FB800KZ"				
30 OUTPUT 701;"FON50KZ"				
40 END				
Example 6-3: Set the reference level to -20 dBm (5 dB/div), resolution bandwidth to 100 kHz, and detector mode to positive.				
10 OUTPUT 701	10 OUTPUT 701;"RE-20DB"			
20 OUTPUT 701	20 OUTPUT 701;"DD5DB"			
30 OUTPUT 701	;"RB100KZ"			
40 OUTPUT 701	;"DTP"			
50 END				
Example 6-4:	Set the trigger mode to Sing marker with the maximum le	le and the sweep time to 2 seconds, and match the vel at each sweep.		
10 OUTPUT 701	;"SI"			
20 OUTPUT 701	;"SW2SC"			
30 OUTPUT 701	;"SR"	! Starts the sweep.		
40 WAIT 2.5		! Pauses the analyzer until the sweep ends (or a ! service request is received).		
50 OUTPUT 701	;"PS"	! Performs a peak search.		
60 GOTO 30	·			
70 STOP		•		
80 END				
Example 6-5:	Example 6-5: Set MAX HOLD (A)			
OUTPUT 701;"A	.M"	! Sets MAX HOLD (A) directly.		
or				
OUTPUT 701;"T	'A SF4"	! Sets MAX HOLD (A) using a Softkey. ! (Trace A → Softkey No.4)		

6.4 Command Syntax (Listener)

Example 6-6: Recall channel 5.	
OUTPUT 701"RN"	! Switches to NORMAL mode.
OUTPUT 701;"RC 5 GZ SF1"	! Recalls channel 5. (SF1 is EXECUTE soft key.)
or	
OUTPUT 701;"RF"	! Switches to FAST mode.
OUTPUT 701;"RC 5"	! Recalls channel 5.

6.5 Query Syntax (Talker)

This section describes the syntax to use when requesting information from the analyzer (or "querying" the analyzer) from the GPIB controller, and the syntax the analyzer uses when returning information in response to a query.

All queries have the form <query>?, where <query> is the code for the query you want to use. Note that all queries must end with a question mark.

The data you request (also called the response) is returned to the controller the next time the analyzer enters Talker mode. The response has one of the formats shown below. Each format puts a header at the beginning of the character string to show what type of data the response contains. (These headers can be omitted.) You can use any of five delimiters to mark the end of the data (see Section 6.8). The query you send is valid unless you modify it.

The following table shows the five response formats, and shows a typical response using each. (In each of these examples the header is ON.)

Notes:

- 1 = Header character (2 or 3 characters if ON, and no characters if OFF)
- 2 = Separator (a space)
- 3 = Sign (a space if positive, a minus sign if negative)
- 4 = Delimiter mantissa
- 5 = Delimiter exponent
- 6 = Delimiter (at initial setting)

	Response Format				
Frequency	HHH∆ ± DDDDDDDDDDDDE ± D CR LF ↑ ↑ ↑ ↑ ↑ ↑ 1 2 3 4 5 6				
	Maximum data size (including 1 through 5) is 21 bytes; the unit is Hz.				
Example: Sending the query CF? might return the response CF 00000123.456E + 6 This shows that the center frequency is 123.456MHz.					
Levei	HHH△ ± DDDDDDDDE ± D CR LF ↑ ↑ ↑ ↑ ↑ 1 2 3 4 5 6 Maximum data size (from 1 through 5) is 16 bytes; the units specified by UNIT are used.				
Example: Sending the query ML? might return the response MLB -00056.23E + 0 This shows a marker level of -56.23dBm.					
Time	HH△±DDDDE±D CR LF ↑↑↑↑↑↑↑↑ 1 2 3 4 5 6 Maximum data size (from 1 through 5) is 11 bytes; the unit is seconds.				
	Example: Sending the query SW? might return SW 0500E-3, showing a sweep time of 500 msec.				
Constant	DDDD CR LF or DDDD.D 1 1 4 6				
	Example: Output the ON/OFF state. Output the number of averagings. 1/0 128				

HP200 and 300 series programming examples (GPIB address = 1).

Example 6-7: Output the marker frequency.		
10 OUTPUT 701;"MF?"		
20 ENTER 701;A		
30 END	Result: A = 1.8E + 9	
Example 6-8: Output the center frequency.		
10 DIM A\$ (30)		
20 OUTPUT 701;"HD1"		
30 OUTPUT 701;"CF?"		
40 ENTER 701;A\$		
50 END	Result: A\$ = CF 00001.234567E + 9	
Example 6-9: Output the unit state.		
10 OUTPUT 701;"UN?"		
20 ENTER 701;A		
30 END	Result: $A = 2 (dB\mu V)$	
Example 6-10: Output the marker frequency	and level.	
10 OUTPUT 701;"MFL?"		
20 ENTER 701;Mf,M1		
30 END	Result: Mf = 1.8E + 9 M1 = -65.15	
Example 6-11: Output the frequency offset.		
10 OUTPUT 701;"FO?"		
20 ENTER 701;On,Frq		
30 END	Result: On = 1 Frq = 1.23E + 6	
Example 6-12: Using NEXT PEAK, read the fi	rst 10 signal peak levels, starting at the second peak.	
10 DIM M1(9)		
20 OUTPUT 701;"PS"		
30 FOR != 0 TO 9		
40 OUTPUT 701;"NXP"		
50 OUTPUT 701;"ML?"		
60 ENTER 701;M1(I)		
70 NEXT I		
80 END Result: M1(0) = -55.01 N	M1(1) = -58.22 $M1(9) = -70.26$	

6.6 Inputting and Outputting Trace Data

The trace displayed on the screen is made up of 701 data points plotted along the frequency axis. When entered into or read out of trace memory A or B, the data is transferred one point at a time, starting at the left end of the trace (the start frequency). Trace data can be sent and received in either ASCII or binary form. The level of each point is expressed as an integer from 0 to 400 (in TPC format) or from 448 to 3648 (in TPF format).

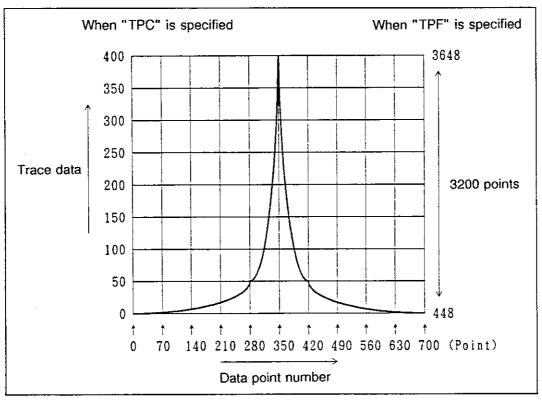


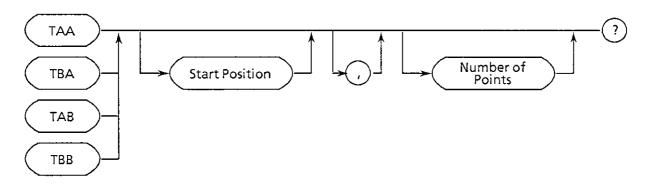
Figure 6-4 Relation Between Screen Grid and Data Points

Table 6-3 shows the GPIB commands used to select TPC or TPF format.

Table 6-3 Trace Accuracy Commands

Command	Amplitude Scale
TPC	0 to 400
TPF	448 to 3648

6-14


The following table shows the commands, queries, and syntax used for sending and receiving trace

I/O Format		Syntax	and Command Codes	
ASCII	<u> </u>	CR LF ↑ Delimiter		
	4-byte Data Without Header			er
			Command (Input) Code	Query (Output) Code
		Memory A	TAA	TAA?
		Memory B	TAB	TAB?
Binary	<u>DD DD</u> <u>DD DD</u> + EOI			
	Point 1 lower byte Point 1 upper byte		Delimiter Point 701 lower byte	е
	The binary value of each data point consists of an upper byte and a lower byte. The EOI signal marks the end of the data.			
			Command (input) GPIB Code	Query (Output) Code
		Memory A	TBA	TBA?
		Memory B	TBB	TBB?

data to and from the analyzer.

You can control the range of the trace data the analyzer returns by specifying the first data point and the total number of data points you want. To do this, use the command syntax shown in the following diagram.

6.6 Inputting and Outputting Trace Data

- Start Position specifies the first data point you want output (0 through 700). The default value is 0.
- Number of Points specifies the total number of data points you want output. This number must not be larger than (701-Start Position). The default value is 701.

6.6 Inputting and Outputting Trace Data

HP200 and 300 series programming examples (GPIB address = 1)

Example 6-13: Output ASCII data from memory A.			
10 DIM Tr(700)	! Fetches 701 variables.		
20 OUTPUT 701;"DL3"	! Specifies CR LF as the delimiter.		
30 OUTPUT 701;"TAA?"	! Specifies that data will be read from memory A in ! ASCII format.		
40 FOR I = 0 TO 700	! Fetches data 701 times.		
50 ENTER 701;Tr(I)			
60 NEXT I			
70 END Result: Tr(0) = 208	Tr(1) = 210Tr(699) = 311 Tr(700) = 298.		
Example 6-14: Output binary data from memory B.			
10 DIM Tr(700)	! Fetches 701 variables.		
20 OUTPUT 701;"DL2"	! Specifies EOI as the delimiter.		
30 OUTPUT 701;"TBB?"	! Specifies that data will be read from memory B in ! ASCII format.		
40 ENTER 701 USING "%,W";Tr(*)	! Fetches data through word conversion until the EOI ! is received.		
50 END Result: Tr(0) = 312	Tr(1) = 319Tr(699) = 208 Tr(700) = 211.		
Example 6-15: Input ASCII data to memory	, A.		
10 INTEGER Tr(700)			
20 OUTPUT 701;"TAA"	! Specifies that data will be read from memory A in ! ASCII format.		
30 FOR I = 0 TO 700	! Inputs 701 variables.		
40 OUTPUT 701;Tr(l)			
50 NEXT I			
Note: Specify ViEW mode before executing the program. After execution is complete, press the ViEW key again to confirm the input result.			

6.6 Inputting and Outputting Trace Data

HP200 and 300 series programming examples (GPIB address = 1).

Example 6-16: Input binary data to memory B.

10 INTEGER Tr(700)

20 OUTPUT 701;"TBB"

! Specifies binary data to be input to memory B.

30 OUTPUT 701 USING "#,W";Tr(*),END

! Inputs 701 data in word size and adds EOI at the

!end.

40 END

Note:

Specify VIEW mode before executing the program. After execution is complete, press the VIEW key again to confirm the input result.

Note: If the data is in ASCII format, specify 701 as the the number of I/O processings.

If the data is in binary format, fetch 701 data items and specify EOI as the delimiter.

6.7 Service Request (SRQ)

The service request function prompts the controller and other devices in the GPIB system to check the analyzer's state by polling the status register. Table 6-4 lists the codes used to enable and disable the SRQ function and to clear the status register. When SRQ is disabled, the controller can still poll the status register.

Table 6-4 Service Request ON/OFF Codes

GPIB code	Description
S0	Enables the SRQ function.
S1	Disables the SRQ function. (This is the default setting.)
S2	Clears the status register.

Table 6-5 Status Register Bit Assignments

Bit	Decimal	Description
0	1	Turns ON when UNCAL occurs.
1	2	Turns ON when calibration is complete.
2	4	Turns ON when a sweep is complete.
3	8	Turns ON when the specified number of averagings is complete.
4	16	Turns ON when plot output is complete.
5	32	Turns ON when an error is found in the GPIB code or a mode error occurs (SYNTAX ERR).
6	64	Turns ON when bits 0 through 5 or 7 when a service request is transmitted (S0).
7	128	

Table 6-5 lists the assignments of the bits in the status register. When any of the following conditions occurs, the corresponding status bit turns ON, and the controller can determine the analyzer's status by polling the status register.

HP200 and 300 series programming examples (GPIB address = 1).

Example 6-17: Read the average end	. (SRQ is not enabled.)
10 OUTPUT 701;"S2"	! Clears the status register.
20 OUTPUT 701;"AG 30GZ"	! Starts averaging.
30 S = SPOLL(701)	! Reads the status register into S.
40 IF BIT(S,3) < >1 THEN 30	! Loops until bit 3 turns ON.
50 DISP "AVG.END"	
60 END	
Example 6-18: Continuously read out	the single sweep end. (SRQ is not enabled.)
10 OUTPUT 701;"S1"	! Sets the mode to single.
20 OUTPUT 701;"S2"	! Clears the status register.
30 OUTPUT 701;"SR"	! Starts the sweep.
40 S = SPOLL(701)	! Reads the status register into S.
50 IF BIT(S,2) < >1 THEN 40	! Waits until bit 2 turns ON.
60 PRINT "SWEEP END"	
70 GOTO 20	! Starts the next sweep.
80 END	
Example 6-19: Read out the average	end. (SRQ is enabled.)
10 OUTPUT 701;"S0"	! Enables SRQ.
20 OUTPUT 701;"S2"	! Clears the status register.
30 OUTPUT 701;"AG"	! Starts averaging.
40 ON INTR 7 GOTO 70	! Jumps to line 70 when an interrupt occurs.
50 ENABLE INTR 7;2	! Sets the analyzer to receive an interrupt.
60 GOTO 50	! Loops until an interrupt occurs.
70 S = SPOLL(701)	! Reads the status register into S.
80 IF BIT(S,3) = 1 THEN 110	! Jumps to line 110 if bit 3 is ON.
90 OUTPUT 701;"S2"	! Clears the status register.
100 GOTO 40	! Repeats.
110 DISP "AVG.END"	
120 END	

6-20 Feb 28/92

6.8 GPIB Codes

The tables on the following pages list and explain the GPIB codes you can use to control the R3265 and R3271.

- An asterisk (*) in the Listener Codes column indicates that you can send numeric data following that code by using a knob, ten key or step key.
- A plus sign (+) in the Output Formats column indicates that multiple data items are output.
- AUTO/MANUAL or ON/OFF in the Output Formats column indicates that the code outputs 1 or 0, respectively.
- ON/OFF in the Output Formats column indicates that they output 1 or 0, respectively.
- A star (☆) in the Remarks column indicates the initial value when power is turned on.
- The words "Knob alone" in the Remarks column indicate that you must use the data knob to enter numeric data after sending that code.
- All frequencies are in Hertz (Hz), and all times are in seconds or fractions of a second.

Function		Listener		Talker Request		
	Function	Code	Code	Output Format	Header	Remarks
	Center Frequency	CENTER *	CENTER?	Frequency	CF	
		CF *	CF?	Frequency	CF	
	CF step size	CFSTEP *	CFSTEP?	Frequency	CS	
		cs *	CS?	Frequency	cs	
	CF step AUTO	CSAUTO	CSAUTO?	AUTO/MANUAL	_	
		CA	CA?	AUTO/MANUAL	_	
 ج	Frequency offset	FROFS *	FROFS?	ON/OFF + Frequency	FO	
Center Frequency		FO *	FO?	ON/OFF + Frequency	FO	
9r Fr	Frequency offset ON	FROFS ON *	<u> </u>	_	_	
Sent (FO ON *	_		-	
		FON *	_	_	-	
	Frequency offset OFF	FROFS OFF	_	_	-	
		FO OFF	_	_	-	
		FOF				
	Mixer state		MXR?	Internal (0)/ External (1)	-	
	Internal mixer	MXINT	_	_	_	
		MXI	_	_	_	

6.8 GPIB Codes

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

	F	Listener		Talker Request		
Function		Code	Code	Output Format	Header	Remarks
	External mixer	MXEXT	_	-	_	
		MXE	_	-	_	
	Positive bias	MXPOSI *	MXPOSI ?	Level	MXP	
		MXP *	MXP?	Level	MXP	
	Negative bias	MXNEGA *	MXNEGA?	Level	MXN	
		MXN *	MXN?	Level	MXN	
	Band N	BND *	BND?	Integer	BND	
	Band lock	_	BNDLC?	ON/OFF	_	
	Band lock ON	BNDLC ON	_	_	_	
	Band lock OFF	BNDLC OFF	_	_	_	
وَ					-	
Center Frequency	Signal ident	_	SIGID?	ON/OFF	_	
Fre Fre	Signal ident ON	SIGID ON	_	-	_	
anter	Signal ident OFF	SIGID OFF	_	-	_	
Ŏ	Avg. Loss mode	AGL*	AGL?	ON/OFF + Level	AGL	
	Avg. Loss ON	AGL ON	_	_		
	Avg. Loss OFF	AGL OFF	-	_		
	Loss vs. Freq mode	_	LVF?	ON/OFF		
	Loss vs. Freq ON	LVF ON	_	-		
	Loss vs. Freq OFF	LVF OFF	-	_		
	Loss vs. Freq input	LVFIN *	_	_		
	Loss vs. Freq deletion	LVFDEL	_	_		
	Reference signal source	_	FREF?	Internal (0)/	_	
	: Internal	RFI	_	External (1)	_	
	: External	RFE	_	_	_	

6-22

6.8 GPIB Codes

Function		Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Remarks
	Frequency Span	SPAN *	SPAN?	Frequency	SP	
		SP *	SP?	Frequency	SP	
	Span mode	_	SPMD?	0: Linear span	_	
		_	SPM?	2: Log span	_	
	Linear span	LINSP *	LINSP?	Frequency	SP	
		LS *	LS?	Frequency	SP	
	Full span	FLSP	_	-	_	
		FS	_	-	-	
İ	Log span	LOGSP	_	. —		
		LG	_	_	_	:
	Log start	LGSTART *	LGSTART?	Frequency	LGA	
ç		LGSRT *	LGSRT?	Frequency	LGA	
Frequency		LGA *	LGA?	Frequency	LGA	
Fre	Log stop	LGSTOP *	LGSTOP?	Frequency	LGB	
Center		LGSTP *	LGSTP?	Frequency	LGB	
Ö		LGB *	LGB?	Frequency	LGB	
	Zero span	ZROSP	_	—	_	
		zs	_	_	_	
	Last span	LTSP	_	<u> </u>	_	
	Start Frequency	START *	START?	Frequency	FA	
		SRT *	SRT?	Frequency	FA	
		FA *	FA?	Frequency	FA	
		FT *	FT?	Frequency	FA	
	Stop Frequency	STOP *	STOP?	Frequency	FB	
		STP *	STP?	Frequency	FB	
		FB *	FB?	Frequency	FB	
		FP *	FP?	Frequency	FB	

Function		Listener		Talker Requ	Talker Request			
	Function	Code	Code	Output Format	Header	Remarks		
	Reference Level	REF *	REF?	Level	Unit : Header			
		RE *	RE?	Level	dBm : REB			
		RL *	RL?	Level	dBmV : REM			
					dBμV : REU			
					dBµVemf:REE			
					dBpW : REP			
					V : REV			
					W : REW			
	X dB/div	DIV *	DIV?	0: 10dB/	_			
e		DD *	DD?	1: 5dB/	_			
e Le				2: 2dB/				
Reference Level				3: 1dB/ ·				
Refe				4: 0.5dB/				
			·	5: 0.2dB/				
	 			6: 0.1dB/				
	Linear multiplication factor	_	LIN?	0:×1	_			
		_	LL?	1:×2	-			
			LN?	2:×5				
				3:×10				
	LINEAR × 1	LIN1		<u>-</u>	_			
		LN1	_	-	_			
		LL1		_	-			

6.8 GPIB Codes

Function	Listener		Talker Request		
Function	Code	Code	Output Format	Header	Remarks
LINEAR × 2	LIN2	_	-	_	
	LN2	-	_	_	
	LL2	_	_	_	
LINEAR × 5	LIN5	-	~	_	
	LN5	_	_	_	
	LL5	_	_	_	
LINEAR × 10	LIN10	_	-	_	
	LN10				
	LL10	_	-	_	
Reference level display	-	UNIT?	0:dBm	_	
unit	_	11012	1:dRmV	_	
		7.0.1170.			
dBm	LIDBM		_	_	
			_		
				_	:
			_		:
dBmV	ŀ	_	_		
		_			
		_	_		
			_		
	LINEAR × 5 LINEAR × 10	LINEAR × 2 LIN2 LN2 LL2 LINEAR × 5 LIN5 LN5 LL5 LINEAR × 10 LIN10 LN10 LN10 LL10 Reference level display unit — dBm UDBM AUNITS DBM KSA UB	Code Code	Function	Code Code Code Output Format Header

Function		Lintanau Codo		Talker Request		Remarks
	Function	Listener Code	Code	Output Format	Header	Hemarks
	dΒμV	UDBUV		_	-	
		AUNITS DBUV		_	-	
		KSC	_	_		
		υU	_	_	_	
	dBμ Vemf	UEMF	-	_	_	
		UE	_	_	_	
	dBpW	UDBPW	-	_	_	
		uw	_	_		
	volts	UVLT	_	_	_	
		AUNITS V	_	-	-	
je j		KSD	_	_	_	:
e Le	watts	UWAT	_	_	-	
Reference Level		AUNITS W		_		
Refer	Level offset	REFOFS *	REFOFS?	ON/OFF + Level	RO	
		RO *	RO?	ON/OFF + Level	RO	
	Level offset ON	REFOFS ON*		_	_	
		RO ON *	_	_	_	
		RON *	_	_	_	
	Level offset OFF	REFOFS OFF	_	_		
		RO OFF	_ :	-	_	
		ROF ,		-		
	Low noise mode		LNI?	ON/OFF	_	
	Low noise mode ON	LNI ON	· –	-	_	
	Low noise mode OFF	LNI OFF	_		_	

Function		Listener		Talker Request	Domostico	
	runction	Code	Code	Output Format	Header	Remarks
	Coupled Function	COUPLE	_	_	_	
		СО	_	_	_	
	RBW	RBW *	RBW?	Frequency	RB	
		RB *	RB?	Frequency	RB	
	RBW AUTO	RBAUTO	RBAUTO?	AUTO/MANUAL	_	
		ВА	BA?	AUTO/MANUAL	_	
	VBW	VBW *	VBW?	Frequency	VB	
		VB *	VB?	Frequency	VB	
	VBW AUTO	VBAUTO	VBAUTO?	AUTO/MANUAL		
		VA	VA?	AUTO/MANUAL		
	SWP	SWP *	SWP?	Time		
ion		SW *	SW?	Time		
nuc		ST *	ST	Time		
led F	SWP AUTO	SWAUTO	SWAUTO?	AUTO/MANUAL		
Coupled Function		AS	AS?	AUTO/MANUAL		
	ATT	ATT *	ATT?	Level	AT	
		AT *	AT?	Level	AT	
	ATT AUTO	ATAUTO	ATAUTO?	AUTO/MANUAL	_	
		AA	AA?	AUTO/MANUAL	_	
	Couple AUTO	COAUTO	_	<u> </u>		
		AC	_	_		
	Couple ALL AUTO	COALL	COALL?	AUTO/MANUAL		
		AL	AL?	AUTO/MANUAL		
	MIN. ATT	ATMIN *	ATMIN?	ON/OFF + Level	ATM	
	MIN. ATT ON	ATMIN ON *	_	_	_	
	MIN. ATT OFF	ATMIN OFF	_	_	_	

Function		Listener		Talker Request		Remarks
	Punction	Code	Code	Output Format	Header	Remarks
	RBW:SPAN	CORS *	CORS ?	ON/OFF + Ratio	CORS	
	RBW:SPAN ON	CORS ON *	_	_	_	
	RBW:SPAN OFF	CORS OFF	_	_	_	
	VBW:RBW	COVR *	COVR?	ON/OFF + Ratio	COVR	
	VBW:RBW ON	COVR ON *	_	_		
	VBW:RBW OFF	COVR OFF	_	_		
	Digital IF mode	_	FFT?	0: OFF		
unction				1: ON (100 Hz contained)		
Coupled Function				2: OFF (100 Hz not contained)		
S	Digital IF ON	FFT ON	_	_	-	
:	ON (RBW 100Hz contained)	FFT1	_	_	_	
	ON (RBW 100 Hz not contained)	FFT2	_	_	-	
	Digital IF OFF	FFT OFF	_	_	_	
	Menu	MENU	_	_		
		ME	_	-		
	Trigger mode	-	TRMD?	0: FREE RUN		
		_	TM?	1: LINE		:
Menu				2: VIDEO		
≥				3: TVV		
				4: TV_H		
				5: External		
				6: Single		

Function		Listener		Talker Request		Remarks
	runction	Code	Code	Output Format	Header	Remarks
	FREE RUN	FREE	_	-	_	
		TM FREE	_	-	-	
		FR	_	_	_	
	LINE	LINE	_	-	_	
		TM LINE	_	_	_	
		LI	_	_	_	
	VIDEO	VIDEO	_	_	_	
		VI	_	_	_	
	TV_V	TVV	_	_	_	
		TV	_	_	_	
	TV_H ODD	TVHODD *	TVHODD?	Integer	TVH	!
	TV_H EVEN	TVHEVEN *	TVHEVEN?	Integer	TVH	
] =	External	EXT	_	_		
Menu		TM EXT	-	_		
		EX	<u></u>	_	-	
	Trigger slope +	TRIGSLP +	_		_	
	-	TRIGSLP -	_	-	_	
	Trigger level	TR	TR?	Integer	TR	
	Detector mode?	_	DTMD?	0: Posi-Nega		
		_	DM?	1: Positive	_	
			DET?	2: Negative		
				3: Sample		
	Posi-Nega	DTN	_	_	_	
		DET NRM	_	_	-	
		KSa	_	_	_	.]
	Positive	DTP	_	_	_	
		DET POS	_	_	_	
		KSb	-		_	

Function		Listener	Talker Request			Demonis
		Code	Code	Output Format	Header	Remarks
	Negative	DTG	_	_	_	
		DET NEG	_	_	_	
		KSd	_	_	_	
	Sample	DTS	_	_	_	
		DET SMP		_	_	
		KSe	_	_	_	
	Sweep mode	_	SWMD?	0: Normal & Full		
		_	SWM?	1: Normal & Window	_	
				10: Manual & Full		
				11: Manual & Window		
				20: Single & Full		
				21: Single & Window		
] 2	Normal	CONTS	_	_	_	
Menu		SN	_	-	_	
	Manual	MANSWP		_	_	
		SM		_	_	
	Single	SNGLS	_	_	_	
		SI	_	_	_	
	Window ON	WDOSWP ON	-	-	_	
		SDW		_	-	
	Window OFF	WDOSWP OFF	_	_	_	
	Reset & Start	SR	_	_	_	
	Take Sweep	TS	_	_	_	
	Sound mode		SDMD?	0: OFF		
	 	_	SD?	1: ON (AM)		
				2: ON (FM)		

	Fire skin a	Listener		Talker Request		Domonto
	Function	Code	Code	Output Format	Header	Remarks
	Sound ON (AM or FM)	SON				
	Sound ON (AM)	SD AM	_	_		:
		SAM	_	· -	-	
	Sound ON (FM)	SD FM	_	-	_	
		SFM	-	-	_	
	Sound OFF	SD OFF	_	_	_	
		SOF	_		_	
	Sound volume	SDVOL*	SDVOL?	Integer	VOL	
		SDV *	SDV?	Integer	VOL	
	Volume (Maximum)	vx	_		-	
	Volume (Intermediate)	VD	_	-	-	
l u	Volume (Minimum)	VN	_	_	_	
Mertu	Pause time	PAUSE *	PAUSE?	ON/OFF + Time	PU	
		PU *	PU?	ON/OFF + Time	PU	
	Marker pause ON	PAUSE ON *	_	-	_	
		PU ON *	<u> </u>	-	_	
		PUN *	_	_	_	
	Marker pause OFF	PAUSE OFF	_	_	_	
	•	PU OFF	_		_	
		PUF		_	-	
	Squelch	SQE *	SQE?	ON/OFF + Level	SQE	
	Squelch ON	SQE ON *	-	-	_	
	Squelch OFF	SQE OFF	_	_	_	
	AGC	_	SDAGC?	ON/OFF	_	
	AGC ON	SDAGC ON	_	_	_	
	AGC OFF			_	-	

	Function	Listener		Talker Requ	uest			Remarks
	Function	Code	Code	Output Format	He	eac	der	Remarks
	Display line	DL *	DL?	ON/OFF + Level	Unit	:	Header	
					dBm	:	DLB	
					dBmV	:	DLM	
		·			dΒμV	:	DLU	
		!			dB _# Vemf	:	DLE	
					dBpW	:	DLP	
					V	:	DLV	
		•			w	:	DLW	
	Display line ON	DL ON *	-	-		-		
Menu		DLN *	_	-		-	:	
	Display line OFF	DL OFF	_	_		_		
		DLF	_	_		_		
	Character display	_	CHD?	ON/OFF		_	:	
		_	ANNOT?	_		_		
	Character display ON	CHD ON	_	_		-		
		ANNOT ON	_	-		_		
	Character display OFF	DHC OFF		_				
		ANNOT OFF	_	<u>-</u>		_		
	Grid	_	GR?	ON/OFF		_		
		_	GRAT?	_		_		
	Grid ON	GR ON		_		_		
		GRAT ON	_	· -				
		GN		-		_		

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Remarks
	Grid OFF	GR OFF	_	-	_	
		GRAT OFF	_	_	_	
		GF	_	-	_	
	Frequency display	_	FRD?	ON/OFF		
	Frequency display ON	FRD ON	_	_	-	
	Frequency display OFF	FRD OFF	_	_	_	
	Input format		IN?	0 : RF		
				1 : PI		
Menu				(Plug IN)		
2	RF input	RFIN	_	_	_	
:	PI input	PI*	PI?	Level	PI	
	Impedance	_	OHM?	0 : 50 Ω		
				1 : 75 Ω		
	50 Ω	OHM50	_	_	_	
	75 Ω	OHM75			_	
	Rear panel output	-	SWPOUT?	LOSWP (0)/AXIS (1)	-	
	AXIS	AXIS	_	_	_	
	2 V/GHz	LOSWP	-		_	
	Trace A	ТА	TA?	(Lower bytes)		
				0: write		
				1: view		
Trace				2: blank		
Tra				3: normalize		
				4: A-DL→A		
				5: A-B→A		
				6: B-A→A		

	Function	Listener		Talker Request		Remarks
	1 diretion	Code	Code	Output Format	Header	nemarks
				(Upper bytes)		
				0: nothing		
				1: + max hold		
				2: +averaging		
				3: + min hold		
	A write	AWRITE	_	_	_	
		AW	_	_	_	
	A view	AVIEW	_	_	_	
		AV				
	A blank	ABLANK	_			
		AB	_		_	
	A max hold	AMAX	_	_	_	
		AM			_	
Trace	A min hold	AMIN	_	<u> </u>		
-	A averaging	AAVG *	AAVG?	Integer	AG	
		AG *	AG?	Integer	AG	
	start	AGR	_		-	
	stop	AGS	-	_	_	
	pause	AGP	_	_	_	
	continue	AGC	_	_	_	
	1 time	AG1	_	_	-	
	continue	AG0	_	_	_	
	Normalize A					
	Normalize A ON	ANORM	_	_	_	
		AN	_	_	_	
		ANORM ON	_	. •	_	
		AN ON	_	_	-	
		ANN	_	_	_	

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Remarks
	Normalize A OFF	ANORM OFF	_	-		
		AN OFF	-	_	_	
		ANF	_	_	_	
	Correction data save	AR	_	_	_	
	Instant normalize A	Al		_	_	
		SHTA	_	_	_	
	A XCH B	АСНВ	_	_	-	
		СН	_	<u> </u>	_	
	A - B → A	ABA	_	-	_	
		TRO	_			
	B - A → A	BAA	_		_	
		TR1	_			
Trace	A - DL → A	ADLA	_	_	_	
-		TR2		<u> </u>		
	Trace A clear	CWA	_	_		
	Trace B	ТВ	TB?	(Lower bytes)		
				0: write		
				1: view		
				2: blank		
				3: normalize		
				4: B - DL → B		
				(Upper bytes)		
				0: nothing		
				1: + max hold		
	<u> </u>			2: + averaging		
				3: + min hold		

	Function	Listener		Talker Request		D
	runction	Code	Code	Output Format	Header	Remarks
	B write	BWRITE	_	_		
		BW	_	_	_	
	B view	BVIEW	_	<u> </u>		
		BV	_	_	_	,
	B blank	BBLANK	_	<u> </u>	_	
		BB		_	_	
	B max hold	BMAX	-	_		
		вм	_		_	
	B min hold	BMIN	_	_	_	
	B averaging	BAVG *	BAVG?	Integer	BG	
		BG *	BG?	Integer	BG	
Тгасе	start	BGR	_	_	_	
Tra	stop	BGS	_	_	_	
	pause	BGP	_	<u> </u>	-	
	continue	BGC	_	_	-	
	1 time	BG1			-	
	continue	BG0	_	_	-	
	Normalize B]	
	Normalize B ON	BNORM		-	-	
		BN	_	_	-	
		BNORM ON	_			
		BN ON	_	_	 	
		BNN	_	_	_	
	Normalize B OFF	BNORM OFF	_	_	-	
		BN OFF	_	_	-	
		BNF		_	_	

	Function	Listener		Talker Request		D
	r diletion	Code	Code	Output Format	Header	Remarks
	Correction data save	BR	_	_	_	
	Instant normalize B	ВІ	_	_	_	
Trace		SHTB	_	–	–	
	B - DL → B	BDLB	_	-	_	
		TR3	_	_	_	
	Trace B clear	CWB	_	_	_	
	Local	LOCAL	_	_		
GPIB		rc	_	_	_	
ত	GPIB address	_	AD?	Integer	AD	
		-	SHLC?	Integer	AD	
	User Definition	USER	_	_	_	
		UR	_	-	_	
	1	UR1	_	_		
initio	2	UR2	_	_	_	
User definition	3	UR3	-	-	_	·
Use	4	UR4	_	-	_	
	5	UR5	_		_	
	6	UR6	_	_	_	į
	7	UR7	-	_	_	
	Recall	RECALL *	RECALL?	0: Normal recall	_	
		RC *	RC?	1: Fast recall	_	
=	Normal recall	RCNORM *	_	_	-	
Recall		RN *	_	_	_	
	Fast recall	RCFAST *	–	_	_	Only one digit
		RF	_	_	_	

	Function	Listener			Talker Requ	est		Remarks
	Puliction	Code	Code		Output Format	Н	eader	Hemarks
	Save	SAVE *	-		_		_	
Save		SV *	_		_		_	
0,		SHRC *	_		-	:	-	
	Instrument Preset	IP	_		-		_	
Preset						;		
	Marker ON	MKR ON *	MKR?	0:	Marker OFF		_	
		MN *	MN?	1:	Normal marker		_	
		MKN *	_	2:	∆ marker		_	
	Marker frequency	_	MF?		Frequency	MF		
	Marker level		ML?		Level	Unit	: Header	
						dB	: MLD	
=						dBm	: MLB	
Marker						dBmV	: MLM	
2		:				dΒμV	: MLU	
						dB _μ Vemf	: MLE	
						dBpW	: MLP	
						v	: MLV	
						w	: MLW	
						dBM/Hz	: MLH	
						dB _μ V/Hz	: MLL	
						dBc/Hz	: MLC	

6.8 GPIB Codes

	Function	Listener		Talker Request		Damada
	Panetion	Code	Code	Output Format	Header	Remarks
	Frequency + Level	_	MFL?	Frequency + Level	Same as MF, ML	
	Normai marker	MKNORM *	MKNORM?	Frequency	MF	
		MKN *	_	_	_	
1		MK *	MK?	Frequency	MF	
	△ marker	MKDLT *	MKDLT?	Frequency	MF	
		MKD *	_	_	_	
		MT *	MT?	Frequency	MF	
	Fixed marker	_	FIX?	ON/OFF	_	
			FX?	ON/OFF	-	
	Fixed marker ON	FIX ON		_	_	
		FX ON	_	_	_	
je.		FXN	_	_	_	
Marker	Fixed marker OFF	FIX OFF	_	_	_	
		FX OFF	_	_	_	
		FXF	_	_	_	
	1/ ∆ marker		REDLT?	ON/OFF + calculated value (See Note below)	MF	
	1/ △ marker ON	REDLT ON	_	_	_	
	1/ △ marker OFF	REDLT OFF	_	_	_	
	Counter	-	COUNT?	ON/OFF	_	
		_	CT?	ON/OFF	_	
		_	CN?	ON/OFF	_	
	Counter ON	COUNT ON		_	_	
		CT ON	_	_	_	
		CN ON		_	_	

Note: Calculated value is used as time or frequency data.

	Function	Listener		Talker Request		<u> </u>
	Function	Code	Code	Output Format	Header	Remarks
	Resolution: 1kHz	CN0	_	<u></u>	_	
	: 100 Hz	CN1	_	_	_	
	: 10 Hz	CN2	_	_	_	
	: 1 Hz	CN3	_	_	_	
	Counter OFF	COUNT OFF	_	-	_	
		CT OFF	_	- .	_	
		CN OFF	_	_	_	
		CNF	_	_	_	
	Counter operation mode	-	CTMD?	FREQ counter: 0		
				MKR counter: 1	•	
	MKR counter	СТМК	_	_	_	
	FREQ counter	CTFR	_		_	
ker	Signal track		SIG?	ON/OFF	_	
Marker			SG?	ON/OFF		
	Signal track ON	SIG ON	_		_	
		SG ON	_	_	_	
		SGN	_	_		:
	Signal track OFF	SIG OFF	_	_	_	
		SG OFF	_	_	_	
		SGF	_	_	_	
	Noise/Hz	NOISE *	NOISE?	0: OFF + Frequency	NI	
		NI *	NI?	1: dBm + Frequency	NI	
				2: dBμv + Frequency	NI	
				3: dBc + Frequency	NI	
	dBm/Hz ON	NIDBM	_	_	_	
		NIM	_	_		

		Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	nemarks
	dBμV/√ Hz ON	NIDBU		_	_	
		NIU		. -	_	
	dBc/Hz ON	NIDBC	_	-	_	
	Noise/Hz OFF	NIC	_	_	_	
		NOISE OFF	_	_	_	
		NI OFF	_	_	_	
		NIF	_	-		
	Fixed Mkr Peak	FXP	_	_	_	
	dB down					
	X dB down width	MKBW *	MKBW?	Level	XDB	
	X dB down	DBDOWN		-	_	
Marker		XDB	_	-	_	
Σ	X dB down left	DBLEFT	_	_	_	
		XDL	_	-	_	
	X dB down right	DBRIGHT	_	-	_	
		XDR	_	_	_	
	X dB relative	DBREL	_	_	_	
		DCO	_	_	_	
	X dB abs. left	DBABSL	_	_	_	
		DC1	_	_	_	
	X dB abs. right	DBABSR	_	_	_	[
		DC2	_	_	_	
	X dB execution state	_	DC?	0: Relative		
				1: Absolute (Left)		
				2: Absolute (Right)		

	F	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Remarks
	Continuous dB down	-	CDB?	ON/OFF	_	
	Continuous dB down ON	CDB ON	_	-	_	
	Continuous dB down OFF	CDB OFF	_	-	_	
	AUTO TUNE	TUNE *	TUNE?	Frequency	TN	
		TN *	TN?	Frequency	TN	
	Pre-selection					
	Auto peaking	PPA	_	· <u></u>	_	
	Manual peaking	PPM *	PPM?	Integer		
Marker	Marker display]	
Mar	Relative	MDR		_	_	
	Absolute	MDA	_	_		
	Marker position]	
	Upper right	MDU	_	_	_	
	Lower right	MDL	_		_	
	Marker OFF	MKR OFF	_	_	_	
		MKOFF	_	_	_	
		МО	_	· –	_	
		MF	_	_	_	
	Muiti Marker ON	MLT	MLT?	ON/OFF	_	
	Multi Marker OFF	MF or MO	_	_		
/arke	Active marker shift	MN* or MK*	_	<u>-</u>	_	
Multi Marker	Multi Marker No.1 ON	MLN1 *	_	_	_	
	Multi Marker No.1 OFF	MLF1	_	_	_	

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Hemarks
	Multi Marker No.2 ON	MLN2 *	_		_	
	Multi Marker No.2 OFF	MLF2	_	_	_	
	Multi Marker No.3 ON	MLN3 *	_	-	_	
	Multi Marker No.3 OFF	MLF3	-	_	_	
	Multi Marker No.4 ON	MLN4 *	-	_	_	
	Multi Marker No.4 OFF	MLF4	_	<u>-</u>	_	
Multi Marker	Multi Marker No.5 ON	MLN5 *	_	_	_	# 10 mm
Multi 1	Multi Marker No.5 OFF	MLF5	–		_	
	Multi Marker No.6 ON	MLN6 *	_	- -	_	
	Multi Marker No.6 OFF	MLF6		_	_	
	Multi Marker No.7 ON	MLN7 *	_	_	_	
	Multi Marker No.7 OFF	MLF7	_	_	_	
	Multi Marker No.8 ON	MLN8 *	_	_	_	
	Multi Marker No.8 OFF	MLF8	_	_	_	

	Function	Listener		Talker Requ	uest	Damarka
	runction	Code	Code	Output Format	Header	Remarks
	Active marker frequency		MF?	Frequency	MF	
	Active marker level	_	ML?	Level	Unit : Header	
					dB : MLD	
		<u> </u> 			dBm : MLB	
					dBmV : MLM	
					dB_\muV : MLU	
					dΒμVemf : MLE	
Multi Marker					dBpW : MLP	
Iti Mi					V : MLV	
Mu					W : MLW	
					dBM/Hz : MLH	
					dΒ _μ V/Hz : MLL	
					dBc/Hz : MLC	
	Frequency + Level	_	MFL?	Frequency + Level	Same as MF, ML	
	Multi Marker frequency	_	MLSF?	Frequency	Same as MF	8 items + ∆MKR
	Multi Marker all level	_	MLSL?	Level	Same as ML	8 items + ∆MKR

		Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	nemarks
	Peak Search	PWAK	_	-	_	
		МКРК	-	-	_	
		мкрк ні	_	_	_	
		PS		_	_	
	NEXT peak	NXPEAK	_	_	_	
		NKPK NH		-	_	
		NXP		-		
	Next peak left	NXLEFT	_		_	
		MKPK NL	_		_	
ક		NXL		<u> </u>	_	
Peak Search	Next peak right	NXRIGHT	_	-	_	
Peak		MKPK NR	_	_	_	
		NXR		<u>-</u>	_	
	NEXT peak MAX/MIN	NXMAXMIN	-	_	-	
		NMM	_	<u> </u>	_	
	MIN search	MIN	_		_	
		MIS	_	-		
	NEXT MIN	NXMIN		_	_	
		NXM	_	_	_	
	Continuous peak	_	CP?	ON/OFF	_	
	Continuous peak ON	CP ON	_	_	_	
		CPN	_	_	_	

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Remarks
	Continuous peak OFF	CP OFF		-	_	
		CPF	-	-	_	
	ΔX	DX *	DX?	Integer (1 to 700)	DX	,
	ΔΥ	DY *	DY?	Integer (1 to 400)	DY	
Peak Search	Peak range					
eak S	Normal	PSN	_	-	_	
مَّ	Upper	PSU	_	-	-	
	Lower	PSL	_	_	_	
	Peak list		PLS?	ON/OFF		
	Peak list ON	PLS ON	_	_		
	Peak list OFF	PLS OFF	-	_	_	
	MKR →	мд	_	_		
	MKR → CF	MKCF	_	-	_	
		мС	_	_		
	MKR → REF	MKRL	_	_	_	
1		MR	_	_	_	
MKR	ΔMKR → SPAN	MTSP		_		
		DS	_	_	_	
	MKR → CF step	MKCS	_	_	_	
		МО	_	_	_	1
	ΔMKR → CF step	MTCS	_	-		
		M1	-	_		

6-46

	Function	Listener		Talker Request		Domorko
	Function	Code	Code	Output Format	Header	Remarks
	ΔMKR → CF	MTCF	_	_	_	
	MKR → MKR step	MKMKS	_	_	_	
		M2	_	_	-	
	ΔMKR → MKR step	MTMKS	_	<u> </u>	_	
MKR ↓		мз	_	_	-	
Σ	MKR step size	MKS *	MKS?	Frequency	MKS	
		MPM *	MPM?	Frequency	MKS	
	MKR step AUTO	MKSAUTO	MKSAUTO?	AUTO/MANUAL	_	
		МРА	MPA?	AUTO/MANUAL	_	
	Measurement Window	WD0	WD0?	ON/OFF	-	
		SH0	SH0?	ON/OFF	_	
		_	WN?	ON/OFF	_	
	Window ON	WDO ON		-		
		WN		_	_	
M.	Window OFF	WDO OFF	-	-		
t Window		WF	_	_	_	
	Center position : X	WDOLX*	WDOLX?	Integer (0 to 700)	WLX	
Measuremer		WLX*	WLX?	Integer (0 to 700)	WLX	
Mea	Center position: Y	_	WDOLY?	integer (0 to 400)	WLY	
		<u> </u>	WLY?	Integer (0 to 400)	WLY	
	Window width	WDODX*	WDODX?	Integer (0 to 700)	WDX	
		WDX*	WDX?	Integer (0 to 700)	WDX	
	Window height	_	WDODY?	Integer (0 to 400)	WDY	
		_	WDY?	Integer (0 to 400)	WDY	

"	Function	Listener		Talker Request		Damarica
	Pulledon	Code	Code	Output Format	Header	Remarks
	Start frequency	WDOSRT *	WDOSRT?	Frequency	WTF	
		WTF *	WTF?	Frequency	WTF	
	Stop frequency	WDOSTP *	WDOSTP?	Frequency	WPF	
		WPF *	WPF?	Frequency	WPF	
Measurement Window	Upper limit level	WDOUP *	WDOUP?	Level	WUL	
		WUL *	WUL?	Level	WUL	
men	Lower limit level	WDOLOW *	WDOLOW?	Level	WLL	
sure		WLL *	WLL?	Level	WLL	
Mea	GO/NO GO decision	_	CM?	NG: 0	_	
				OK: 1		
	GO/NO GO decision A execution	СМА	-	_	_	
	GO/NO GO decision B execution	СМВ	_	-	_	
	EMC	EMC	_	_	_	
		SH1	_	_	_	
	Antenna type		ANT?	0: OFF	_	
Ì				1: Dipole	:	
				2: Log peri		
				3: TR17203		
EMC	Antenna select					
	Dipole	ANT0	_	_	_	
		AN0	_	_	_	
	Log peri	ANT1	_	_	_	
		AN1			_	
	TR17203	ANT2	_	_	-	
		AN2	_		_	

	Function	Listanar Caida		Talker Request		Damada
	Function	Listener Code	Code	Output Format	Header	Remarks
	Antenna OFF	ANT OFF	_	_	_	
		AF	_	_	_	
	Antenna correction table		ANCORR?	ON/OFF	_	
		_	CR?	ON/OFF	_	
	Antenna correction table ON	ANCORR ON	_	-	_	
		CR ON	_	-	-	
		CRN	_	-	-	
	Antenna correction table OFF	ANCORR OFF	_	-	-	
		CR OFF	_	-	_	
5		CRF		_	_	
EMC	Antenna correction table entry	CRIN *	_	-	_	
	Antenna correction table delete	CRDEL	_	-	_	
	Level correction	_	LVCORR?	ON/OFF	_	
	Level correction ON	LVCORR ON	_	-	_	
	Level correction OFF	LVCORR OFF	_	-	_	
	EMC Trace detection	_	EMCDET?	0: NORMAL		
				1: QP		
				2: MEAN		
				3: PEAK		ŀ
	: QP	EMCDET QP				
	: MEAN	EMCDET MEAN				
	: PEAK	EMCDET PEAK				
	: NORMAL	EMCDET NRM				

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Hemarks
	QP	_	QP?	ON/OFF	_	
	QP ON	QP ON	_	_	_	
		QN	_	_	_	
	QP OFF	QP OFF	_	_	_	
		QF	_	_	_	
	QP BW AUTO	QPAUTO	QPAUTO?	0: AUTO	_	
		QA	QA?	1: 200 Hz	_	
			_	2: 9 kHz		
			_	3: 120 kHz		
			_	4: 1 MHz		
	QP BW	,				
EMC	200 Hz	QP0	_	.	_	
氫	9 kHz	QP1	_	-	_	
	120 kHz	QP2	_	_		
	1 MHz	QP3	_	_	_	At PEAK only
	Select the limit line type	-	LIMTYP?	0 : FREQ 1 : TIME		
	Limit line type selection					
	Frequency domain	LIMTYP FREQ	_	-	_	
	Time domain	LIMTYP TIME	_	_		
!	Limit line frequency or time					
	ABS/REL?	_	LIMPOS?	0 : ABS 1 : REL	<u>-</u>	
	ABS	LIMPOS ABS	_		_	
	REL	LIMPOS REL	_	_		

	Function	Listanar Cada		Talker Request		Remarks
	Function	Listener Code	Code	Output Format	Header	Hemarks
	Limit line level			***************************************		
	ABS/REL?	_	LIMAPOS?	0 : ABS 1 : REL	<u>-</u>	
	ABS	LIMAPOS ABS	_	<u>-</u>	_	
	REL	LIMAPOS REL	_	_	_	
	Limit line frequency or time shift	LIMSFT	LIMSFT?	frequency or time	SFT	
	Limit line level shift	LIMASFT	LIMASFT?	level	SFTA	
	Limit line 1	-	LMTA?	ON/OFF	_	
	Limit line 1 ON	LMTA ON		_	_	
		LAN	_			
	Limit line 1 OFF	LMTA OFF	_	_	_	
		LAF	_	_	_	·
	Limit line 1 table entry	LMTAIN *		_	_	
EMC	Limit line 1 table delete	LMTADEL	_	_	-	
	Limit line 2	_	LMTB?	ON/OFF		
	Limit line 2 ON	LMTB ON	-	_	_	
		LBN	_	_	-	
	Limit line 2 OFF	LMTB OFF	_	_	-	
		LBF	-	_	_	
	Limit line 2 table entry	LMTBIN *	_	_	_	
	Limit line 2 table delete	LMTBDEL		_	_	
	Limit line type selection		LIMTYP?	0: Frequency domain		
				1: Time domain		
	: Frequency domain	LIMTYP FREQ		_		
	: Time domain	LIMTYP TIME	<u> </u>	_		

	Function	Listener Code			Remarks	
	Function	Listerier Code	Code	Output Format	Header	Remarks
	Limit line horizontal position	_	LIMPOS?	0: Absolute position 1: Relative position	_	
	: Absolute toward X axis	LIMPOS ABS	_		_	
	: Relative toward X axis	LIMPOS REL	<u></u>	_	_	
EMC	Limit line vertical position	_	LIMAPOS	0: Absolute position 1: Relative position	_	
	: Absolute toward X axis	LIMAPOS ABS	_		_	
	: Relative toward X axis	LIMAPOS REL	_	_	_	
	Limit horizontal shift	LIMSFT *	LIMSFT?	Frequency or time	SFT	
	Limit vertical shift	LIMASFT *	LIMASFT?	Level	SFTA	
	Calibration	CAL		_	_	
		SH7	_		_	
	CAL ALL	CLALL	_	_	_	
		CLA	_	_	_	
	Total gain calibration	CLTOTAL	_	_	_	
		CLG	_	_	_	
	Input ATT calibration	CLATT		_	_	
Б Б		IT0		_	_	
Calibration	IF step AMP calibration	CLSTEP		_	_	
Cal		IT1		_	_	
	RBW switch calibration	CLRBW	_	_	_	
		IT2	-		_	
	Log linearity calibration	CLLOG	_	_	_	
	- •	IT3	_	-	_	
	AMPTD MAG calibration	CLMAG	-	- -	-	
		IT4	_	· ·	-	

	···			Talker Requ	uest	
	Function	Listener Code	Code	Output Format	Header	Remarks
	PBW calibration	CLPBW		_	_	
		IT6	_	_	_	
	Calibration level	CL *	CL?	Level	Unit : Header	
					dBm : CLB	
					dBmV : CLM	
					dBμV : CLU	
					dBμVemf : CLE	
					dBpW : CLP	
					V : CLV	
					W : CLW	
ion		CLN *	_	_ 		
Calibration	Calibration REF	CLREF *	_		-	Knob alone
Cal	f characteristics correction?	_	FRCORR?	ON/OFF	-	
		_	FC?	ON/OFF	_	
	f characteristics correction ON	FRCORR ON	_	-	-	
		FC ON		_	-	
		FCN	_	_	-	
	f characteristics correction OFF	FRCORR OFF	-	_	_	
		FC OFF	_	- ,	_	
		FCF	_	_	_	
	CAL correction?	· <u>-</u>	CLCORR?	ON/OFF		
			CC?	ON/OFF	_	

	F ation	Listener		Talker Request		Damadia
	Function	Code	Code	Output Format	Header	Remarks
	CAL correction ON	CLCORR ON	-	-	_	
_		CC ON	_	_	_	
ation		CCN	_	_	_	
Calibration	CAL correction OFF	CLCORR OFF	-	-	_	
		CC OFF	_		_	
		CCF	_	_	_	
	Plotter	SH8	_	_		
	Туре					
	R9833	PLTYPEA	_	_	_	
	HP7470	PLTYPEB	_	_	_	
	HP7475	PLTYPEC	_	_	-	
	HP7440	PLTYPED		_	_	
	HP7550	PLTYPEE	_	-		
	Data					
Plotter	All information	PLALL	_	-	_	
ā	Waveform alone	PLTRACE	_	_	-	
	Characters alone	PLCHAR	_	_	_	
	Grid alone	PLGRAT	_	_	-	
	Marker, DL, WD0	PLMKR	_	_	_	
	Multi Marker List	PLMULTI	_	_	_	
	Antenna table	PLANT	_		-]
	Limit 1 table	PLLMTA	_	_	<u> </u>	
	Limit 2 table	PLLMTB	_	_	_	
	Loss table	PLLOSS	_	<u> </u>		
	Paper]	
	A4	PLA4	_	_	_	
	A3	PLA3			_	

		0.1		Talker Request		Remarks
	Function	Listener Code	Code	Output Format	Header	Hemarks
	Division size					
	Single	PLPIC1	_	_	_	
	Division into 2	PLPIC2	-	***		
	Division into 4	PLPIC4	_	_		
	Print position					
	Center	PLMID	_	_	_	
	Left	PLLEFT	_	-	-	
	Right	PLRIGHT		-	_	
	Upper left	PLUPLEFT	_	-	_	
	Upper right	PLUPRIGHT	-	_		
Plotter	Lower left	PLLOWLEFT		_	_	·
🖺	Lower right	PLLOWRIGHT			_	
	Number of pens				,	
	1 pen	PLPEN1	_	_	_	
	2 pens	PLPEN2	_		_	
	4 pens	PLPEN4	_	_		
	6 pens	PLPEN6	_	_	-	
	8 pens	PLPEN8	_	_	_	
	Print position shift					
	AUTO	PLAUTO	_	-	_	
	Manual	PLMAN	_	-	_	
	Execution	PLOT		-	_	
		PLT	-			

6.8 GPIB Codes

	Function	Listener		Talker Request		D
	runction	Code	Code	Output Format	Header	Remarks
	Utility	SH3	_	· <u>-</u>	_	
	OBW	OBW *	OBW?	Percentage + Calculated value	OBW, MF	(See Note below)
	ADJ	ADJ	ADH?	Calculated value	Same as ML	(See Note below)
Ctility	ADK GRAPH	ADG	_	_		
>	ADJ GRAPH OFF	ADG OFF	_	_	<u> </u>	
	ADJ Ch space	ADCH *	ADCH?	Frequency	ADC	
	ADJ specified BW	ADBS *	ADBS?	Frequency	ADB	
	ADJ2	ADJ2	ADJ2	Calculated value	Same as ML	(See Note below)
	Memory card	CARD	_		-	
		SH4	_	_	_	
و ا	Card initialization	MCINIT	-	-	_	
\Q		ммі	_	-	_	,
Memory Card	Soft menu read-in	MCLOAD	_	_	_	
₽		MML	_	_	_	
	Soft menu write-in	MCSTORE	_		_	
		MMS	-	_	_	
	Label		LB?	Character string	_	Up to 30 characters
		_	SH9?	Character string	_	
Label	Label ON	LB ON/***/	_	_		Enclose the characters with /
		LON/***/	_	_	_	
	Label delete	LB OFF	_	_	_	
		LOF	_	<u> </u>	_	

Note: The two calculation results are output continuously. IF OBW: Frequency + Frequency

If ADJ: Level + Leve

			Listener		Talker Request	<u></u>	Domeste
	Function		Code	Code	Output Format	Header	Remarks
	Softkey			_	_	_	:
	Softkey No. 1		SF1	_	_]	
	Softkey No. 2		SF2	_	_	_	
Softkey	Softkey No. 3		SF3	-	_	-	
Sol	Softkey No. 4		SF4		_	_	
	Softkey No. 5		SF5	_	_	-	
	Softkey No. 6		SF6	_	_	-	
	Softkey No. 7		SF7	_	_	_	
	Data entry						
	0 to 9		0 to 9	_	_	_	
	. (decimal	point)		_	_	-	
	BK SP		BS	_	_	_	
	↑ (step up)	UP	_	_	-	
	↓ (step do	wn)	DN	_	_	_	
	Knob up	(coarse)	CU		-	_	
		(fine)	FU	_ 	_	-	
<u> </u>	Knob dowi	n (coarse)	CD	-	-	_	
Data entry		(fine)	FD	-	_	_	
Data	GHx		GZ		-	-	
	MHz		MZ	_	_	-	
	kHz		ΚZ	_	_	-	
	Hz		HZ	-	_	_	
	dB		DB	_	_	-	
	dBm		DВM	-	_	-	
	dBmV		DBMV		_	_	
	dB _μ V		DBUV	_	_	_	
	dB _µ Vemf		DBUVEMF	_	_	_	
	dBpW		DBPW	_	_	_	
	V		V, MV	-	_	_	

6-57

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Hemarks
	W	W, MW	_	_	_	
ح ا	mA	МА		_	_	
ent	sec	sc	_	_	_	
Data entry	msec	мѕ	_	_	_	
	μ sec	us	_	_		
	ENTER	ENT	_	_	-	
	Trace Data Input/output		TP?	0: 0 to 400 mode		
				1: 448 to 3648 mode		
	Accuracy	[
	401 points	TPC	_	_	_	
Ħ	3201 points	TPF		_	_	
Input/output	Memory A output (ASCII)	_	TAA?	4 bytes + delimiter	_	1-point data
	(Binary)	<u> </u>	TBA?	2 bytes x 700 points	_	EOI signal
ce Data	Memory B output (ASCII)	_	TAB?	4 bytes + delimiter		1-point data
Trace	(Binary)	_	TBB?	2 bytes x 700 points	_	EOI signal
	Memory A input (ASCII)	TAA	_	-	_	1-point data
	(Binary)	ТВА	_	_	_	EOI signal
	Memory B input (ASCII)	ТАВ	_	_	_	1-point data
	(Binary)	твв	_	_	_	EOI signal

	Function	Listener		Talker Reque	est ·	D 1
	Function	Code	Code	Output Format	Header	Remarks
	Average Power					
	Average times	PWTM*	PWTM?	Integer	_	
				(1 to 1000)		
	Average power ON	PWAVG ON		_	_	
	Average power OFF	PWAVG OFF	-	_	_	
Power	Average power value?	_	PWAVG?	Level	Unit : Header	
Je P(:				dBm : PWB	
Average					dBmV : PWM	
Æ					dBuV:PWU	
					dBuVemf	
					: PWE	
					dBpW : PWP	
					V : PWV	
					W : PWW	
	Tracking generator					R3365 /3371only
	TG: ON	TG	TG?	OFF/ON	_	
	: OFF	TGF			_	
ator	TG output level	TGL	TGL?	Level	<u>Unit</u> : Header	
					dBm : TGB	
g ge					dBmV: TGM	
Tracking gener					dBuV:TGU	
Tre					dBuVemf	
					: TGE	
					dBpW : TGP	
					V : TGV	
					W : TGW	

	Function		Listener		Talker Request		Remarks
	ranction		Code	Code	Output Format	Header	Hemarks
	Power sweep	: ON	PSWP ON	PSWP?	OFF/ON	_	
		: OFF	PSWP OFF			_	
	Start level		FA *	FA?	Level	FAB	
	Stop level		FB *	FB?	Level	FBB	
	Sweep time		sw *	SW?	Time	SW	
	Smoothing	: ON	SMTH ON *	SMTH?	OFF/ON, count	SMTH	
		: OFF	SMTH OFF				
		: Count	SMTH *	SMTH?	OFF/ON, count	SMTH	
generator	Reference line	: ON	RLIN ON	RLIN?	OFF/ON		
		: OFF	RLIN OFF			_	:
Tracking	Reference line offset		RLOFS *	RLOFS?	Level	RLOFS	
Trac	Reference line	slope	XYR *	XYR?	Ratio	XYR	
	PxdB marker:	Execute	PSDB	_	_	-	
	:	Normal	PXDB NRM	PXDB?	Normal/Continue, level	PXDB	
					0: Normal mode		
					1: Continue mode		
	:	Continue	PXDB CONT	PXDB?	Normal/Continue, level	PXDB	
	:	Level	PXDB *	PXDB?	Normal/Continue, level	PXDB	

	Function	Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Heillaiks
	Through correct : ON	FNRM ON	FNRM?	OFF/ON	_	
	: OFF	FNRM OFF			_	
	Level calibration	LCAL	LCAL?	OFF/ON		
	: ON	LCAL ON			_	
tor	: OFF	LCAL OFF				
generator	Power lineality cal	PCAL	PCAL?	OFF/ON	_	
	: ON	PCAL ON				
Tracking	: OFF	PCAL OFF				
Ë.	f calibration	FCAL	FCAL?	AUTO/MANUAL		
	: Auto	FCAL AUTO			_	
		TGA			_	
	: Manual	FCAL MNL			_	
		тсм			_	

	Function	Listener		Talker Request		D1-
	runction	Code	Code	Output Format	Header	Remarks
	Misc					
	Header OFF	HD0	_			
	Header ON	HD1	_	_		☆
	Delimitter					
	CR LF (EOI)	DLO	_	_	-	
	LF	DL1	-	_	_	
	(EOI)	DL2	_	_	_	
	CR LF	DL3		_	_	☆
	LF (EOI)	DL4	_	_		
	Service request					
•	Interrupt ON	S0	_	_	_	
	Interrupt OFF	S1	_	- .	_	☆
Misc	Status clear	S2		<u></u>	_	
Mi	Service request mask	_	RQS?	Decimal notation equal to SRQ bit	-	
	Soft menu display		MND?	ON/OFF		
	Soft menu display ON	MND ON	_	_	_	
	Soft menu display OFF	MND OFF	_	_	_	
	Device type		VER?	0:R3265		
<u>.</u>				1:R3271		
	Device type (character string)	_	TYPE?	Character string + Delimiter	_	
	:	_	TYP?	Character string + Delimiter	_	
	Revision output	· -	REV?	Character string + Delimiter	_	
	Screen data output	-	GPL?	64 characters x 24 lines	-	

		Listener		Talker Request		Remarks
	Function	Code	Code	Output Format	Header	Hemarks
	Gated sweep					Effective
	Trigger signal					when option 71
	Source : ext	GTEXT	-	-	_	is installed.
	: int	GTINT	_	_	_	matanea.
	Int trigger					
	Signal source					
	: video	VIDEO GT	-	_	-	
	: tv-v	TVV GT	-	_	_	
	: ext	EXT GT	_	_	_	
	Int trigger					
	Slope					
_	: +	TRIGSLP GT+	-	_	-	
Optton 71	: -	TRIGSLP GT -	_	_		
do	Gate position	GTPOS*				
	Gate width	GTWID*				
	Gated sweep					
	: ON	GTSWP ON	_	_	-	
	: OFF	GTSWP OFF	_	_	-	
	Gated mode off	GTOFF	_	_		
	Dalay sweep					Effective
	Trigger signal					when option 71
	Source					is installed.
	: video	VIDEO DLY	_	-	-	motaneu.
	: tv-v	TVV DLY	-	_		
	: ext	EXT DLY	_	_	-	
	Trigger slope					
	: +	TRIGSLP DLY+	_	_	-	
	: -	TRIGSLP DLY -	_	<u> </u>		

6.8 GPIB Codes

	Function	Listener Code		Talker Request		Remarks
	Tunction	Listerier Code	Code	Output Format	Header	Hemaiks
	Delay time	DLYTIM*				
	Delay sweep	DLYSWTIM*				
	Time					
	Delay sweep					
n 71	: ON	DLYSWP ON	_	-	_	
Option 71	: OFF	DLYSWP OFF	_	_	_	
	Delay step size					
	: Auto	DLYSTEP AUTO	_	-	_	
	: Manual	DLYSTEP MAN*	- ,	_	_	
	Delay mode off	DLYOFF	_		_	
	Simulated Analog Display					Effective when
	Simulated analog	ANLG ON	<u> </u>		_	option 74 is
	display ON Simulated analog display OFF	ANLG OFF		_	-	installed.
74	Display density	ANLG* (See Note below)	_	_		
Option 74	ON/OFF + Display density	-	ANLG?	OFF/ON + Integer (1 to 30)	_	
	CONT	ANLG CONT	_	_	-	
	PAUSE	ANLG PAUSE	_	_	_	
	Marker frequency Marker level	MKX* MKY*	MKX? MKY?	Frequency Level		
	-	(See Note below)				}
	Maker ON Maker OFF	MKX ON MKX OFF	_		<u> </u>	

Note: Specify the data of 1 to 30.

	Function	Listener Code		Talker Request	****	Remarks
	ranction	Listerier Code	Code	Output Format	Header	Hemarks
74	X Cursor ΔX Cursor X Cursor ON ΔX Cursor ON X Cursor OFF	CSRX* CSRDX* CSRX ON CSRDX ON CSRX OFF	CSRX? CSRDX? - - -	Frequency Frequency — — —	- - - -	
Option 74	Y Cursor ΔY Cursor Y Cursor ON ΔY Cursor ON Y Cursor OFF	CSRY* CSRDY* CSRY ON CSRDY ON CSRY OFF	CSRY? CSRDY? - - -	Level Level - - -	- - - -	
	Read out total wareform data	_	OPANLG?	_	-	
Option 76	Total Power Average times Total power ON Total power OFF Total power value?	PWTM* PWTOTAL ON PWTOTAL OFF	PWTM? PWTOTAL?	Integer (1 to 1000) — — Level	Unit : Header dBm : PWB dBmV : PWM dBuV : PWU dBuVemf : PWE dBpW : PWP	Effective when option 76 is installed.

	Function	Listener Code		Talker Request		Remarks
	1 diletion	Listerier Code	Code	Output Format	Header	Hemains
	PASS/FAIL Decision Consecutive mode? Consecutive mode ON Consecutive mode	PFC OFF	PFC? -	OFF/ON - -	- -	Effective when option 74 is installed.
	OFF Judgment result? Trace A judgment Trace B judgment	PFJ A PFJ B	PFJ?	0: FAIL 1: PASS	-	
	Judgment result (details)	_	OPF?	0: PASS 1: UPPER 2: LOWER 3: UPPER&LOWER 4: ERROR		
Option 76	Upper FAIL point binary output	_	FPU?	FAIL point counter (2byte) + FAIL point (2byte) *FAIL point counter	-	EOI Signal
	Lower FAIL point binary output	-	FPL?	FAIL point counter (2byte) + FAIL point (2byte) *FAIL point counter	_	EOI Signal
	Root Nyquist Filter V Nyquist F, ON V Nyquist F, OFF JDC mode NADC mode	NQST ON NQST OFF — NQST JDC NQST NADC	– NQST? – –	 OFF/ON -	- - - -	Effective when option 74 is installed.
	Symbol rate Role factor	BRATE* RFCT*	BRATE? RFCT?	Frequency 0.01 to 0.99	_ _ 	
	Alternated Modulating Distortion Measurement	PKTHIRD	_	-	-	

	6 Examples or Data Entry (GPIB codes with asterisk)
Command example	Description
CF100MZ	Sets center frequency to 100 MHz.
CS100KZ	Sets frequency step size to 100 kHz.
FON10MZ	Turns frequency offset ON and set it to 10 MHz.
SP500MZ or LS500MZ	Sets frequency span to 500 MHz.
LGA100MZ	Sets log start frequency to 100 MHz.
LGB1000MZ	Sets log stop frequency to 1 GHz.
FA100KZ or FT100KZ	Sets start frequency to 100 kHz.
FB400KZ or FP400KZ	Sets stop frequencies to 400 kHz.
RE-25DB or RL-25DB	Sets reference level to -25 dBm (if units are set to dBm).
DD5DB	Sets 5dB/div.
RON30DB	Turns level offset ON and sets it to 30 dB.
RB300KZ	Sets RBW to 300 kHz.
VB100KZ	Sets VBW to 100 kHz.
SW200MS	Sets Sweep time to 200 msec.
AT20DB	Sets Attenuator to 20 dB.
PUN100MS	Turns Marker pause ON and sets the time to 100 msec.
DLN87DB	Turns THE display line ON and sets to 87 dB μ V (if units are set to μ dB V).
MK1.8GZ	Turns normal marker ON and sets it to 1.8 GHz.
MT2MZ	Turns delta marker ON and sets normal marker 2 MHz from it.
MN100KZ	Sets the active marker(s) at 100 kHz.
NOISE50Hz	Sets noise power noise width to 50 Hz.
XDB6DB	Sets XdB down width to 6 dB. (This can be also set by the XDL and XDR commands.)
DX10GZ	Sets increment X point of the next peak search to 10. (GZ is entry.)
DY50GZ	Sets increment Y point of the next peak search to 50. (GZ is entry.)
MPM100KZ	Sets marker step size to 100 kHz.
AG 200GZ	Sets average A to 200 times and executes. (GZ is entry.)
BG 300GZ	Sets average B to 300 times and executes. (GZ is entry.)
AD8GZ	Sets the analyzer GPIB address to 8. (GZ is entry.)

6.8 GPIB Codes

Command example	Description
WTF1MZ	Sets window start frequency 1 MHz.
WPF2MZ	Sets window stop frequency to 2 MHz.
WUL-20DB	Sets window upper level to -20 dBm (if units are set to dBm).
WLL-40DB	Sets window lower level to -40 dBm (if units are set to dBm).
CLN-25DB	Sets CAL level to -25 dBm (if units are set to dBm).
SV5GZ SF1	Saves channel 5 (SF1 represents softkey No.1).
RC5GZ SF1/RF5	Recalls channel 5 (Normal/Fast mode).

7. OPTION FUNCTION

7.1 Serial I/O Function (when option 02 is installed)

A controller such as a personal computer having no GPIB interface can also offer a simple measurement system, using the option 02 (Rs-232C interface).

Remote control which is normally carried out, using the GPIB interface, can also be obtained, using the option 02 (RS-232C interface).

(1) Compatibility with the GPIB remote control codes: The control codes which can be used by the option 02 are identical to the GPIB codes of the R3265/3271, excluding some of the codes/functions inherent to the GPIB.

CAUTION

- 1. See the R3265/3271 Instruction Manual (Section 6.8 GPIB Code List).
 - Talker/Listner codes can be used as they are.
 - Header information related to the Talker request is compatible.
 - The output format is also compatible.
- 2. See Subsection 7.1.5 of this manual "Difference from the GPIB Remote Programming".
 - Different from the R3265/3271 GPIB codes in some points.
- (2) Functions which can externally be controlled
 The following functions can be controlled with the option 02:
 - ① Measurement condition setting: Conditions entry through panel key operation
 - Set states output: Set states and data call
 - 3 I/O of measurement data: Screen trace data write-in and read-out
 - Status output: Data on the current instrument status can be read output in the same way as the GPIB status byte.

7.1 Serial I/O Function (when option 02 is installed)

7.1.1 Specifications

(1)	Tı	ransfer sp	eed (baud rate):	The following six speed modes can be selected.
(1	D	19200 b	ps	
Q	2	9600	←Default	
0	3)	4800		
Ø	D	2400		
(3	1200		
Œ	3	600		
(2)	D	ata length	n:	The following two modes can be selected.
(1	D	7-bit	←Default	
Q	2	8-bit		
(3)	S	top bit :		The following three modes can be selected.
(1	D	1 bit	← Default	
Q	2)	1.5 bit		
(3	3)	2 bit		
(4)	P	arity bit:		The following three modes can be selected.
(1	D	None	← Default	
Q	2	Odd pari	ity	
(3)	Even pa	rity	
(5)	C	ommunica	ation:	Semi-double type

7.1 Serial I/O Function (when option 02 is installed)

(6) Data flow control:

The handshake type of the communication with the controller is specified. The following two modes can be selected according to the controller communication port function.

① Hard Wired handshake

←Default

The RS-232C transmits no data while the transmitter DSR line is kept low. While the R3265/3271 DTR line is kept low, no transmission data is accepted.

Xon/Xoff handshake

Once the Xoff character is received through the data line, the transmitter transmits no data until the Xon character is received. In case the R3265/3271 cannot receive a data, the Xoff character is transmitted to indicate that no data can be accepted. When the R3265/3271 has become capable of receiving data, the Xon character is promptly transmitted.

(7) Characters between transmiting interval:

When transmitting data from the R3265/3271, a time interval can be set between characters so as to reduce the load at the controller. The following five modes can be selected.

- ① 0 ←Default
- 2 1.0 milli sec.
- 3 2.5 milli sec.
- 4.0 milli sec.
- 5.5 milli sec.
- (8) Communication procedure:

The communication is of non-protocol type, using carriage return (CR) and line feed (LF) as the message delimiters.

Note: A special method is used for binary output of waveform data. (See Subsection 7.1.4 "Extended Format".)

(9) Transfer error control:

No transfer error control is executed in the R3265/3271. If necessary, carry out the control with the controller.

7.1 Serial I/O Function (when option 02 is installed)

(10) Communication port opening:

The R3265/3271 ports are opened when power is turned ON. The parameters required for communication are held in memory. The port is opened with the values which have been set through the panel/soft key operation. When shipped from the factory, the values are set to the default.

The communication port can forcibly be closed through the panel/soft key operation.

7.1.2 Connection

(1) Connection with the Controller

Use the RS-232C cable for connecting the R3265/3271 with the controller.

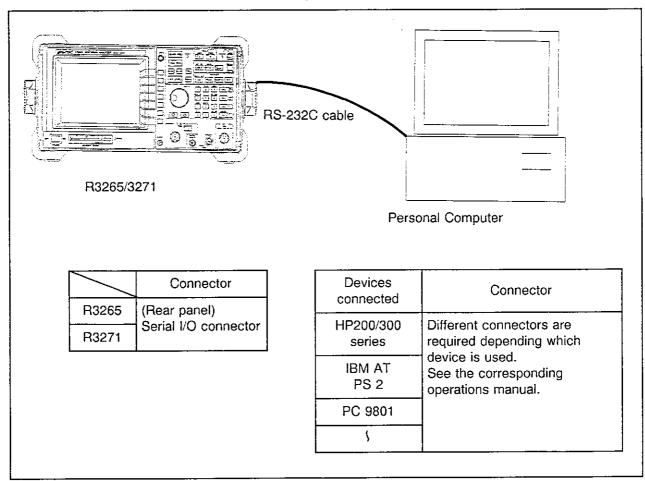


Figure 7-1 Personal Computer Connection

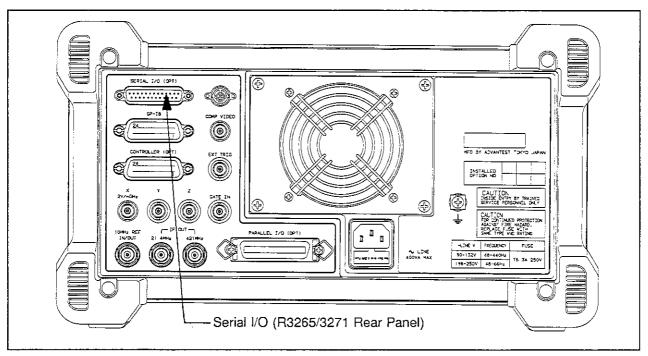
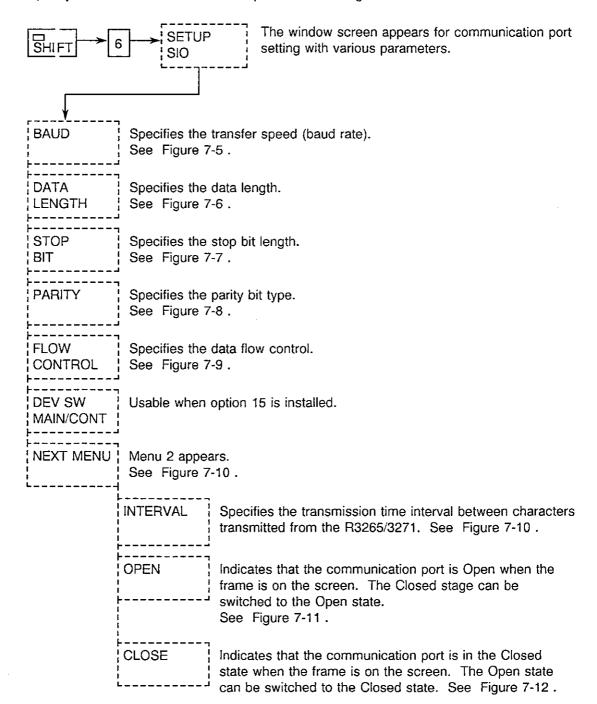


Figure 7-2 RS-232C Communication Port

This section describes the connection with the controller (such as a personal computer) for using the option 02. The signal lines here are named according to the EIA (Electric Industries Association).

R3265/327	1 (25-pin D-SUB)		Host (25-pin	D-SUB)
Pin No.	Signal name		Signal name	Pin No.
2	BA (TXD)		(RXD) BB	3
3	BB (RXD)		(TXD) BA	2
4	CA (RTS)		(DCD) CF	8
8	CF (DCD)		(RTS) CA	4
5	CB (CTS)		(DTR) CD	20
6	CC (DSR)	←	(CTS) CB	5
20	CD (DTR)		(DSR) CC	6
7	AB (GND)		(GND) AB	7
		· · · · · · · · · · · · · · · · · · ·		

Figure 7-3 Cable Connection


Table 7-1 Serial Input/Output Interface Signal Names

Pin number	Signal name		Signal R3265 /3271	direction External	Contents
1	Ground	FG			Frame ground Used as protection
2	Transmit Data	TXD			Sending data
3	Receive Data	RXD	*		Receiving data
4	Request to Send	RTS			Sending request signal to external device. Permit to receive at "High" level, prohibition to receive at "Low" level.
5	Clear to Send	CTS	-		Sending clear signal from external device, Permit to send at "High" level, prohibition to send at "Low" level.
6	Data Set Ready	DSR			N.C.
7	Signal Ground	SG			Signal ground
8	Carrier Detector	DCD			N.C.
9~19	. "				N.C.
20	Data Terminal Ready	DTR			Terminal ready
21~25					N.C.

7.1.3 Communication Port Setting

(1) Explanation on the Communication Port Setting Menu

Specify the RS-232C communication parameters through the window screen.

- (2) Screen Disply Examples
 - ① Option select menu

Press the \square are pressed in this sequence.

Then the option select menu illustrated in Figure 7-4 will appear

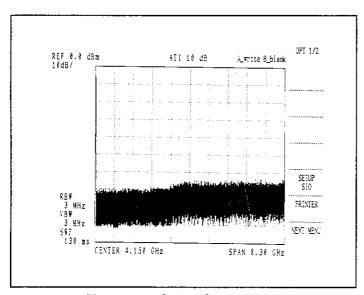


Figure 7-4 Option Select Menu

② Baud rate setting screen

Then the menu illustrated in Figure 7-5 will appear.

Figure 7-5 Baud Rate Setting Menu

3 Data Length Setting Screen

Then the menu illustrated in Figure 7-6 will appear.

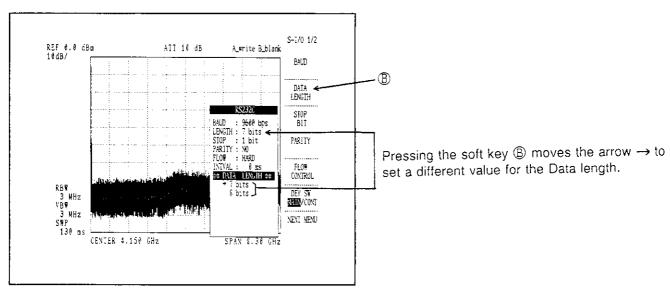


Figure 7-6 Data Length Setting Menu

Stop Bit Setting Screen

Then the menu illustrated in Figure 7-7 will appear.

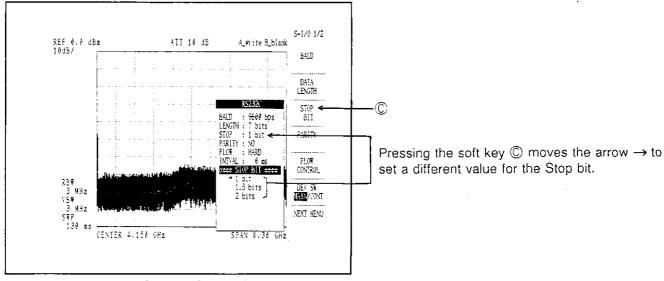


Figure 7-7 Stop Bit Setting Screen

S Parity Setting Screen

Then the menu illustrated in Figure 7-8 will appear.

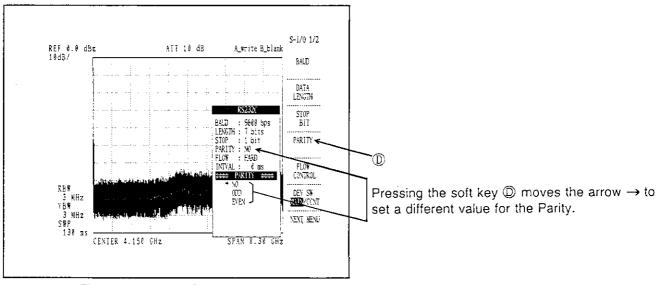


Figure 7-8 Parity Setting Menu

6 Flow Control Setting Screen

Then the menu illustrated in Figure 7-9 will appear.

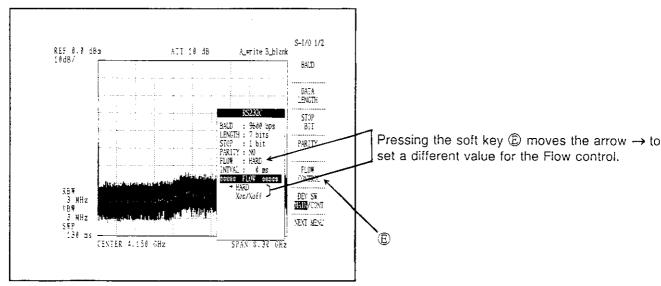
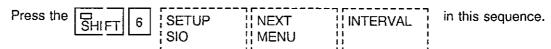



Figure 7-9 Flow Control Setting Menu

Interval Setting Screen

Then the menu illustrated in Figure 7-10 will appear.

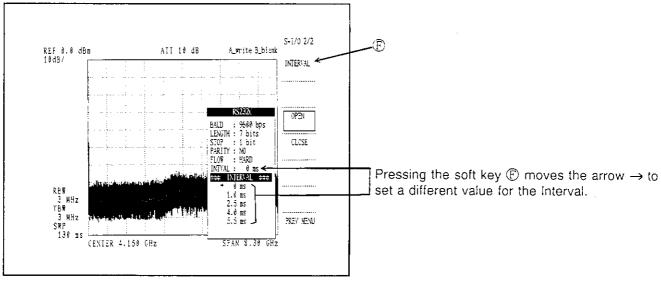
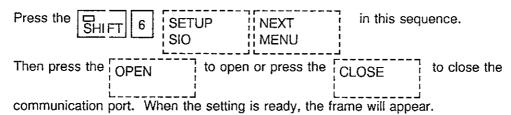



Figure 7-10 Interval Setting Menu

Communication Port Open/Close Setting Screen

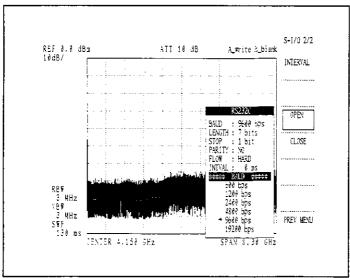


Figure 7-11 Screen of the Communication Port in Open state

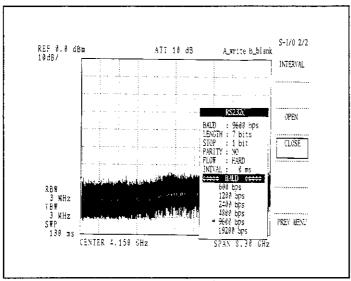
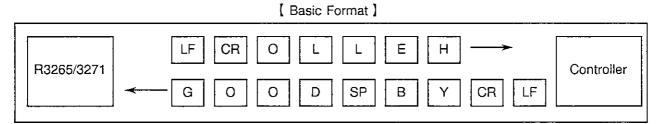
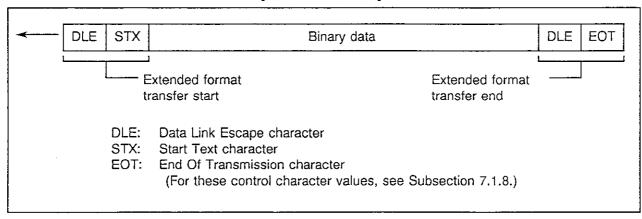
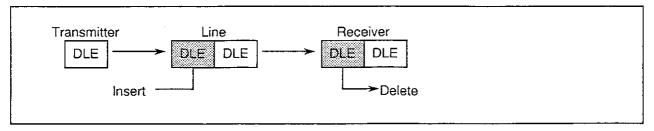



Figure 7-12 Screen of the Communication Port in Closed state


7.1.4 Message Format

A message transferred between the controller and the R3265/3271 is basically an ASCII code characters string terminated by the carriage return (CR) and the line feed (LF) codes.


The waveform data binary format is transferred in the extended transfer format which can transparently transfer the 8-bit data.

[Extended Format]

If the binary data exist a data with an identical code as the DLE character, a message end may be detected. To cope with this, an additional DLE character is inserted when transmitting the data and the additional DLE character is ignored when the data is received. With this operation, the data transparency is kept.

(Source data handling is explained in the examples 14 and 15 given in the Subsection 7.1.6.)

7.1 Serial I/O Function (when option 02 is installed)

7.1.5 Difference from the GPIB Remote Programming

Note that the Option 02 is in some points different from the GPIB remote programming.

- (1) Command code
 - ① GPIB commands which are not supported

① Delimiter control:

DL0, DL1, DL2, DL3, DL4

SRQ interrupt:

S0, S1

- Additional commands for the RS-232C remote programming
 - ① Panel key lock control:

KLK, KUK

Status byte read out:

PLL?

(2) Panel control

When executing the RS-232C remote programming, the following specifications are set. (When executing the GPIB remote programming, the remote lamp on the panel is kept ON and the local operation is automatically inhibited.)

- ① The remote lamp will not light.
- ② The local operation will not be inhibited unless the KLK command is transmitted.
- When the local operation is inhibited with the KLK command, it will not automatically released unless the KUK command is issued.
- In case the KLK command has been issued to inhibit local operation and the processing is completed without releasing, the release can be executed with the LCL key or the IP key.

7.1.6 Sample Programs

This chapter explains how to use the option 02 through several examples. The programs shown below all use the "Microsoft Quick BASIC" produced by the Micro Soft Co., Ltd.

The sample program using the "HP-BASIC" of Heulette Packard are given in Section 7.1.9. The programs explained in the R3265/3271 Instruction Manual Section 4.4 have been rewritten for this function in this chapter. For the program functions, see the R3265/3271 Instruction Manual.

(1) Option 02 Usage

Sample Program 1

Example 1: Execute R3265/3271 master reset and turn CAL signal (25MHz) ON.

The RS232C port is opened with specifications of 9600 baud; No parity; Data length 8-bit; Stop bit 1; Binary mode (Xon/Xoff control excluded); Line feed character insert mode; and DSR line monitor time out in 6 seconds.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "IP"

PRINT #1, "CLN"

END
```

Example 2: Set the start frequency to 300kHz and the stop frequency to 800kHz, and add 50kHz of the frequency offset.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "FA300KZ"

PRINT #1, "FB800KZ"

PRINT #1, "FON50KZ"

END
```

Example 3: Set the reference level to -20dBm (5dB/div), the resolution bandwidth to 100kHz, and the detector mode to posi.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "RE-20DB" Reference level -20dBm
PRINT #1, "DD5DB" 5dB/div
PRINT #1, "RR100KZ" Resolution bandwidth 100kHz
PRINT #1, "DTP" Detector mode is set to posi.
END
```

7.1 Serial I/O Function (when option 02 is installed)

Example 4: Set the trigger mode to Single and the sweep time to 2 seconds; and set the marker at the maximum level at each sweep.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1
PRINT #1, "SI"
PRINT #1, "SW2SC"
SWLOOP:
    PRINT #1, "S2"
                                                 Status byte clear
    PRINT #1, "SR"
                                                 Sweep start
                                                 Waiting for the Sweep end
       PRINT #1, "PLL?"
       INPUT #1, A$
       SB = VAL(A\$)
    LOOP UNTIL SB AND &H4
    PRINT #1, "PS"
                                                 The marker peak search
GOTO SWLOOP
END
```

Example 5: Set MAX HOLD (A).

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "AM"

Or

'PRINT #1, "TA SF4"

END

OPEN

Set through soft key operation
```

Example 6: Recall. (for channel 5)

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "RN" Switch to the Normal mode.
PRINT #1, "RC 5 SF1" Recall channel 5.

' Or
'PRINT #1, "RF" Switch to Fast mode
'PRINT #1, "RC 5" Recall channel 5.

END
```

Example 7: Output the marker frequency (integer).

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "HD0" Header output suppress

PRINT #1, "MF?"

INPUT #1, A$

B = VAL(A$) Result example B = 1700000

END
```

7.1 Serial I/O Function (when option 02 is installed)

Example 8: Output the center frequency (character string).

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "HD1" Header output start

PRINT #1, "CF?"

INPUT #1, A$ Result example A$ = CF 0000001.8000E + 9

END
```

Example 9: Output the unit status.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "UN?"

INPUT #1, A Result example A = 2 (dBuv)

END
```

Example 10: Output the marker frequency and the level at once.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "HD0" Header output suppress

PRINT #1, "MFL?"

INPUT #1, Mf$, M1$

Mff = VAL(Mf$) Result example Mff = 1.8E + 0.9 MN = -73.02

M11 = VAL(M1$)

END
```

Example 11: Output the frequency offset.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "HD0" Header output suppress

PRINT #1, "F0?"

INPUT #1, On$, Frq$

Frqq = VAL(frq$) Result example On$=1 Frqq=1200000

END
```

7.1 Serial I/O Function (when option 02 is installed)

Example 12: Using the NEXT PEAK, read 10 peak levels from the signal second peak level.

```
DIM M1$(9), M11(9)

PEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "PS"

FOR I = 0 TO 9

PRINT #1, "NXP"

PRINT #1, "ML?"

INPUT #1, M1$(I)

M11(I) = VAL(M1$(I))

NEXT I

Result example M11(1) = -55.01 M11(2) = -58.22...M11(9) = -70.26

END
```

(2) Trace Data I/O

The trace data I/O is basically identical in the GPIB. The ASCII formats including the data value contents, message format, delimiter (fixed), and transfer count are all of equivalent specifications.

The binary formats for the data value, data transfer priority, and the data byte count are all the same, excluding that a control character is inserted at the beginning and the end of each data. (See Subsection 7.1.4 [Extended Format].) If a data item identical to the DLE character is found among the data items, it should be noted that an additional DLE character has been inserted. (Note: The data length should be set to 8 bits. If a 7-bit data is transferred, the uppermost bit of the waveform data will be missing and a correct waveform may not be created.

I/O	Description				
ASCII format	DDDI	DD CR LF			
	1-poi	point data			
		4-byt	e data without a he	eader	_
			Input code	Output code	
		Memory A	TAA	TAA?	
		Memory B	TAB	TAB?	
	ļ				
Binary format	A 1-p	oint data is divided when transferred.	into two bytes: the	Output code TBA?	byte e
		Memory A Memory B		<u>'</u>	

7.1 Serial I/O Function (when option 02 is installed)

• Sample Program 2

Example 13: Output data from Memory A in ASCII.

```
OPEN "COM1:9600, n, 8, 1, DS2000, LF" FOR RANDOM AS #1

DIM TR$(700) 701 variables are fetched.

PRINT #1, "TAA?" Memory A is set to ASCII.

FOR I = 0 TO 700 Data fetch is repeated 701 times.

INPUT #1, TR$(I)

NEXT I

END
```

Result example: TR\$(0)=0208 TR\$(1)=0210 TR\$(699)=0311 TR\$(700)=0298

Example 14: Output data from Memory B in Binary.

The RS-232C port is opened in Binary mode; and in mode without Line feed character insert.

```
OPEN "COM1:9600, n, 8, 1, DS6000" FOR RANDOM AS #1
DIM TR$(1500)
CONST DLE = 16, STX = 2, EOT = 4
CONST CR = 13, LF = 10
                                                  Control character definition
DLEflag = 0
                                                  Flag for DLE character delete control
i = 3
PRINT #1, "TBB?; CHR$(CR); CHR$(LF);
TR$(1) = INPUT$(1, #1)
                                                  DLE character received
                                                  STX character received
TR$(2) = INPUT$(1, #1)
                                                  1st byte of Waveform data received
TR$(3) = INPUT$(1, #1)
DO
    IF (DLEflag = 0) THEN
                                                               DLE character inserted in the
        IF (TR$(i) = CHR$(DLE)) THEN DLEflag = 1
                                                               waveform data is detected.
    ELSE
        IF (TR\$(i) = CHR\$(DLE)) THEN
                                                  The additional DLE character is deleted.
           DLEflag = 0
            i = i - 1
        ELSE
            IF (TR$(i) <> CHR$(EOT)) THEN DLEflag = 0
        END IF
    END IF
    i = i + 1
    TR$(i) = INPUT$(1, #1)
                                                  Waveform data fetch
LOOP WHILE (NOT ((DLEflag = 1) AND (TR$(i) = CHR$(EOT))))
                                                                          Data end detected
                                                                          DLE character + EOT
                                                                          character
STOP
END
```

Example 15: Input data from Memory A in ASCII.

```
DIM TR$(700)

OPEN "COM1:9600,n,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "TAB"

FOR I = 0 TO 700

PRINT #1, TR$(I)

FOR J = 0 TO 10

NEXT J

NEXT I

STOP
END
```

Note: Set the VIEW mode before executing the program. After execution press the VIEW key again to check the results of entry

Example 16: Input data from memory B in Binary.

The RS-232C port is opened in Binary mode and in mode without Line feed character insert.

```
OPEN "COM1:9600, n, 8, 1, DS6000, LF" FOR RANDOM AS #1
DIM TR$(1500)
CONST DLE = 16, STX = 2, EOT = 4
                                                    Control character definition
CONST CR = 13, LF = 10
PRINT #1, "TBB; CHR$(CR); CHR$(LF);
                                                    It is assumed that a data has been set in the
PRINT #1, CHR$(DLE); CHR$(STX);
                                                    TR$() by "TBA?" or "TBB?".
FOR J = 0 TO 1401
    IF (TR\$(J) = CHR\$(DLE)) THEN
        PRINT #1, CHR$(DLE);
        FOR K = 0 TO 1
                                                    Wait time is required to assure the processing
        NEXT K
                                                    time in SPA.
        END IF
    PRINT #1, TR$(J);
    FOR K = 0 TO 1
                                                    Wait time is required to assure the processing
                                                    time in SPA.
    NEXT K
NEXT J
PRINT #1, CHR(DLE); CHR$(EOT);
STOP
END
```

Note: Set the VIEW mode before executing the program. After execution, press the VIEW key again to check the results of entry.

7.1 Serial I/O Function (when option 02 is installed)

(3) Status Byte Read-out Function

The remote programming functions "Service Request (SRQ)" and "Status Byte" are inherent to the GPIB and not supported by any options. However, for normal message exchange, the status byte data read-out function has been added.

The status byte data is transmitted form the R3265/3271 as a 2-byte ASCII data with the Status byte read-out code (PLL?).

Table 7-2 Status Byte Control Codes

Message code	Description
PLL?	Request for read the status byte information from the R3265/3271.
S2	The R3265/3271 status byte is cleared. (Same as the GPIB code)

Table 7-3 Status Byte Information

Bit	Decimal	Description
0	1	Turns ON when UNCAL has occurred.
1	2	Turns ON when a calibration is complete.
2	4	Turns ON when a sweep is complete.
3	8	Turns ON when the average count is reached.
4	16	Turns ON when the plot output is completed.
5	32	Turns ON when an error is detected in the message code of this function.
6	64	Undefined
7	128	Undefined

An example of Status byte

Sweep complete and the Average count reached. (4 + 8 = 12)

31	32	CR	LF
Ų,	02-	011	

Sample Program - 3

Example 17: Read-out the average count end.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "S2" The status byte is cleared.
PRINT #1, "AG 30GZ" Average A start (30 times)

SW:
PRINT #1, "PLL?" The Status byte is read out.
INPUT #1, StatusByte$
SB = VAL(StatusByte$)
IF (SB AND &H8) = 0 THEN GOTO SW The loop completion is indicated until bit 3
PRINT "AVG. END" turns ON.

END
```

Example 18: Read out the single sweep end with an interval.

```
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1
PRINT #1, "SI"
                                                    Set to Single
PRINT #1, "S2"
                                                    The status byte is cleared.
PRINT #1, "SR"
                                                    Sweep start
SW:
    PRINT #1, "PLL?"
                                                   The status byte is read out.
    INPUT #1, StatusByte$
    SB = VAL(StatusByte$)
    IF (SB AND &H4) = 0 THEN GOTO SW
                                                    The loop completion is indicated until bit 2
                                                    turns ON.
PRINT "SWEEP END"
END
```

Example 19 shows data flow control set to "Xon/Xoff" control.

This is a modification of Example 10.

Example 19: Output the marker frequency and the level at once. (Xon/Xoff CONTROL)

The RS-232C port is opened with specifications of 9600 baud; No parity; Data length 8-bit; Stop bit 1; ASCII mode (Xon/Xoff control); Line feed character insert mode; and DSR line monitor time out in 6 seconds.

```
OPEN "COM1:9600,N,8,1,ASC,DS6000,LF" FOR RANDOM AS #1

PRINT #1, "HD0" Header output suppress

PRINT #1, "MFL?"

INPUT #1, Mf$, MI$

Mff = VAL(Mf$) Result example Mff = 1.8E+09 M11 = -73.02

M11 = VAL(M1$)

END
```

7.1 Serial I/O Function (when option 02 is installed)

(4) Panel Key Lock Function

The GPIB remote control is equipped with the Remote/Local Enable as a function to inhibit local operation. The option 02 can also execute the equivalent function through message transmission.

This function is called Panel Lock. Once Panel Lock of the R3265/3271 is requested from the controller, the panel key operation or knob operation are ignored until a Panel Unlock message or a Local message (LC) is transmitted. Note that the panel lock state can also be released by one of the following operations:

- Press the LCL key.
- Press the IP key.
- Turn OFF the R3265/3271 power.

in the Panel Lock state, soft menu on the screen cannot be modified with commands from the controller.

Table 7-4 Panel Lock Code

Message code	Description
KLK	The R3265/3271 panel key operation is inhibited. (Panel Lock)
KUK	The R3265/3271 panel key operation is enabled. (Panel Unlock)

7.1.7 Data Communication Error

While executing the RS-232C remote programming, a communication error such as Time Out may be caused in the controller due to some reason. In such a case, the remote operation can be issued by re-transmitting the last message (command) which has been transmitted from the controller.

This section describes a simple recovery program using the "Quick BASIC" of Micro Soft Co., Ltd.

Sample program - 4

Example 20: Using the NEXT PEAK, read 10 peak levels from the signal second peak level. (This is a combination of Example 12 and a communication error processing.)

```
CONST CommTimeOut = 24
                                             Time Out error No.
CONST CommBuffOver = 69
                                             Buffer over flow error No.
DIM M1$(9), M11(9)
OPEN "COM1:9600,N,8,1,DS6000,LF" FOR RANDOM AS #1
ON ERROR GOTO Commerror
PRINT #1, "PS"
FOR I = 0 TO 9
   PRINT #1, "NXP"
    PRINT #1, "ML?"
    INPUT #1, MT$(I))
NEXT I
                                             Result example: MII (1) = -55.01 MII(2) = -58.22...
STOP
                                            Communication error processing routine
Commerror:
    IF ERR = CommTimeOut THEN
        IF RetryCount = 5 THEN
            ON ERROR GOTO 0
        END IF
        RetryCount = RetryCount + 1
        PRINT "Communication TIME OUT !!!"
        FOR J = 0 TO 5000
        NEXT J
        PRINT "Retry communication !?"
        RESUME
    EL SE
        IF ERR = CommBuffOver THEN
            PRINT "Communication buff. overflow !!!"
            RESUME
        END IF
        PRINT "Something Error has been occured."
       PRINT "Error no. :"; ERR
        ON ERROR GOTO 0
    END IF
END
```

7.1 Serial I/O Function (when option 02 is installed)

7.1.8 Control Character Code List

Symbol	Hex. code	Description
STX	02h	Used as a header in Binary data transfer.
EOT	04h	Used as a delimiter in Binary data transfer.
LF	0Ah	Used as a delimiter in ASCII data transfer.
CR	0Dh	Used as a delimiter in ASCII data transfer.
DLE	10h	Used as a control character in Binary data transfer.
Xon	11h	X parameter transfer start character
Xoff	13h	X parameter transfer suppress character

7.1.9 HP-BASIC Sample Programs

Some of the sample programs given in Subsection 7.1.6 are described in HP-BASIC (Example 17).

HP-BASIC

```
20
     1
30
    40
          DO AVERAGING OPERATION THRU. SIO
50
    60
70
     DIM Message(1)[130]
80
     Sc=20
90
     ON ERROR GOTO Error
                         ! Set up error trap routine
100 GOSUB Sio_init
        OUTPUT Sc; "S2"
110
        OUTPUT Sc: "AG 30GZ"
120
130 LI: !
        OUTPUT Sc; "PLL?"
140
150
        ENTER Sc; S
160
        IF BIT (S, 3) \iff THEN L1
170
        PRINT "AVG. END"
180
        STOP
ERROR HANDLING ROUTINE
210 !********************
220 Error:
                           ! Error trap
230
        IF ERRN<>167 THEN Other error
240
        STATUS Sc, 10; Wart_error ! Get WART error information
      _ IF BIT (Uart_error, 2) THEN Overrun ! Overrun error
250
        IF BIT (Uart error, 2) THEN Parity ! Parity error
        IF BIT (Uart error, 2) THEN Framing ! Framing error
270
       IF BIT (Uart error, 7) THEN Break ! Break detected
280
290 Other:
                                       ! Other error
            PRINT "Other error !"
300
310
            STOP
320 Overrun:
                                       ! Overrun error
330
            PRINT "Overrun error !"
340
            STOP
                                       ! Framing error
350 Framing:
            PRINT "Framing error!"
360
370
            STOP
380 Break:
                                       ! Break
            PRINT "Break detected !"
390
410 Other_error:
                                       ! NO ERROR
            PRINT "Error trapped ?"
420
            STOP
430
440 !*************
450 !
        SERIAL COMMUNICATION I/F INITIALIZE
460 [***************************
                                       ! Initialize SIO Control reg.
470 Sio init:
                                       ! Reset I/F board
             CONTROL Sc, 0:1
480
                                       ! Set PROTOCOL TO Async.
490
             CONTROL Sc. 3:1
```

7.1 Serial I/O Function (when option 02 is installed)

(cont'd)

500 Wait: STATUS Sc. 38; All_sent 510	
510	
520 CONTROL Sc. 0:1 ! Reset I/F Car 530 CONTROL Sc. 14:1+2+4 ! Set Control E	
000	The ale Mande
	SIOCK Mask
540 ! CONTROL Sc. 39:4 ! Set Break sin	ngnal time
550 ! CONTROL Sc. 6;1 ! Break signal	send
560 CONTROL Sc. 8;3 ! Set DTR/RTS 1	line
570 CONTROL Sc. 13;128+1 ! Set INT mask	
	e-change notifi-
	cation
590 CONTROL Sc. 16;0 ! Disable conne	ection time out
600 CONTROL Sc, 17;0 ! Disable nonac	ctivity time out
610 CONTROL Sc. 18;40 ! Lost Carrier	400 ms
620 CONTROL Sc, 19;10 ! Transmit time	e out 10S
630 CONTROL Sc, 20:15 ! Set Transmit	speed : 19200
640 CONTROL Sc. 21:15 ! Set Receive S	
	handshake to non
660 CONTROL Sc. 23:3 ! Set H/W hands	shake type
670 CONTROL Sc. 24;2	
680 CONTROL Sc. 28;2! Set EOL chra.	. NO.
690 CONTROL Sc, 29;13 ! Set CR code	
700 CONTROL Sc. 30;10 ! Set LF code	
710 CONTROL Sc. 34:3 ! Set DATA LEN	
720 CONTROL Sc. 35;0! Set STOP BIT	
730 CONTROL Sc. 36;0 ! Set PARITY TO	
740 CONTROL Sc, 37;0 ! Set CHAR. IN	TERVAL
750 RETURN	
760 !!!!!	
770 END	

7.1 Serial I/O Function (when option 02 is installed)

7.1.10 Exception Processing

The R3265/3271 interrupts the current communication processing and executes the corresponding exception processing when the following states are caused.

① State:

In receiving a message from the controller (before the delimiter character string is received), more than 5 seconds have passed without receiving the next character.

Processing: Them message is canceled and the break signal is generated. The next character received is handled as a start of another message.

State:

In transmitting a message to the controller, the transmit suppress from the controller has not been released in 5 seconds after the last character was transmitted.

Processing: The message transmission is interrupted and preparation is made for the next transmission/reception.

3 State:

During a trace data input, no transmission can be detected from the controller for more than 25 seconds under the condition that the specified number of times (ASCII format) or the specified number of bytes (Binary format) has not been reached.

Processing: The trace data input mode is released and preparation is made for the next transmission/reception.

4 State:

In receiving a message, a framing error, parity error or overrun error occurs.

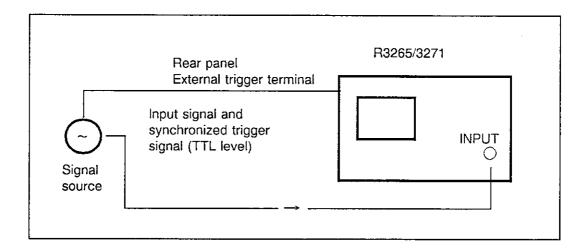
Processing: Them message is canceled and the break signal is generated. The next character received is handled as a start of another message.

7.2 GATED SWEEP, and DELAY SWEEP Function (when option 71 is installed)

7.2.1 GATED SWEEP function

A desired gate signal can be generated internally from the trigger signal source to enable GATED SWEEP.

If F domain analysis, gate input and external trigger input are used as the trigger signal source. In time domain analysis, gate input, external trigger input, VIDEO trigger and TV-V trigger are used.



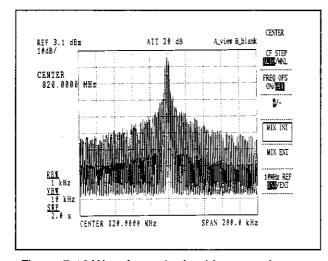
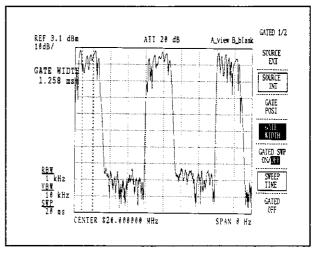
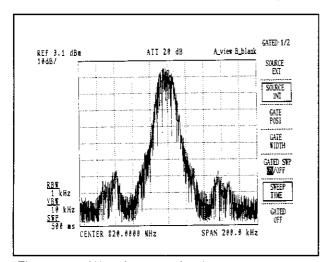

Figure 7-13 shows the waveform obtained by normal measurement without GATED SWEEP.

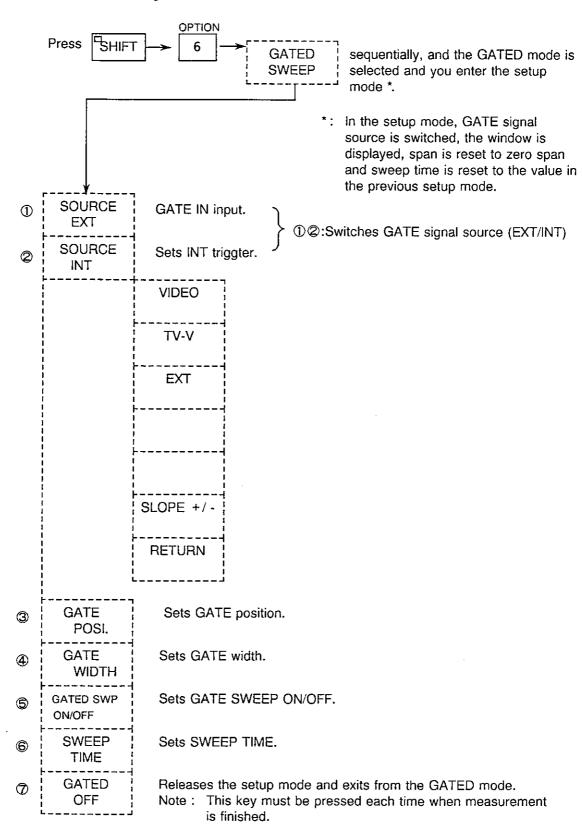
Figure 7-14 shows the waveform at the setup mode, then SPAN is automatically set to zero span. Select the trigger signal source with SOURCE EXT/INT. Move the WINDOW to the section to be gated with GATE POSI or GATE WIDTH.


Figure 7-15 shows the waveform obtained by measurement with GATED SWEEP ON. Then SPAN is automatically reset to the value before one setup mode.

For further information on key operation, see "(1) GATED SWEEP setting menu".


7.2 GATED SWEEP, and DELAY SWEEP Function (when option 71 is installed)

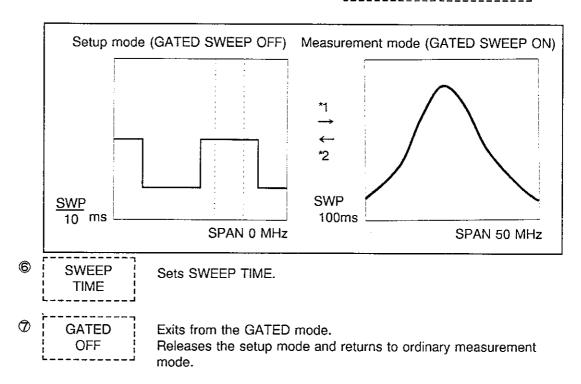
Figuer 7-13 Waveform obtained by normal measurement.



Figuer 7-14 Waveform obtained by measurement in GATED SWEEP OFF as the setup mode (Move the WINDOW to the section to be gated.)

Figuer 7-15 Waveform obtained by measurement in GATED SWEEP ON as the setup mode (GATED SWEEP measurement.)

(1) GATED SWEEP setting menu


7.2 GATED SWEEP, and DELAY SWEEP Function (when option 71 is installed)

1	SOURCE SOURCE INT
	Set in the setup mode. (☐ TRIG ☐ is not allowed.)
	The default GATE signal source is EXT. If INT is selected, one of video, TV-V and EXT must be selected. If INT is selected here, the gate input at the rear panel is used as the trigger signal of the gate signal. If VIDEO or TV-V is selected here, the VIDEO or TV-V trigger signal is used as the trigger signal of the gate signal, respectively. SLOPE +/- (rise/fall) is selectable for INT signal.
	Note: F domain analysis is not available when VIDEO trigger or TV-V trigger is selected.
3	GATE GATE WIDTH
	GATE POSI and GATE WIDTH display the WINDOW for date adjustment with numeric keys, setup keys or the data knob. The resolution depends on SWEEP TIME. Numeric keys enable setting in units of up to 100 ns. With GATED SWEEP OFF and zero span, the WINDOW is displayed. Otherwise, only data is displayed. Even if a part of the WINDOW goes out of the screen due to setting, internal data is also set.
	GATE POSI.: ·Move with GATE width fixed. ·The setting range is from 300 ns to 100 ms (Default = 300ns) GATE WIDTH: ·Increase/decrease width evenly on the left and right sides. ·The setting range is from 100 ns to 1.5 sec (Default = 1us)
	GATE POSI GATE WIDTH
3	GATED SWP ON/OFF
	ON: Switches the measurement mode to GATED (releases the setup mode) and GATED SWEEP is carried out. SPAN and SWEEP TIME is reset to the values in the previous measurement mode. (See *1 in the following figure.)
	Trigger setting becames normal, or changes the setting. When SOURCE is set to INT, trigger level and +/- are fixed at the value at that time.

OFF: Stops GATED SWEEP and switches to the setup mode.

SPAN is reset to zero span and SWEEP TIME is to the value in the previous setup mode, respectively. (See *2 in the following figure.)

The GATE signal source is selected in SOURCE SOURCE EXT INT

7.2.2 DELAY SWEEP function

This mode enables time domain waveform measurement from the trigger signal source after elapse of desired time. The external trigger input, VIDEO trigger or TV-V trigger is used as the trigger signal source.

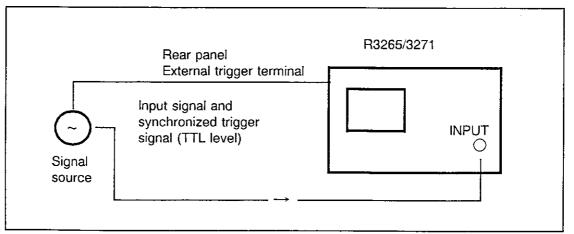


Figure 7-16 shows the trigger signal source selected by the TRIG in the DELAY SWEEP setup mode. Move the WINDOW to the section you want to expand with DELAY TIME or DELAY SWP TIME. The WINDOW is displayed when zero span is set.

Figure 7-17 shows the waveform expanded in the WINDOW with DELAY SWEEP. Detail on key operation, see "(1) DELAY SWEEP setting menu".

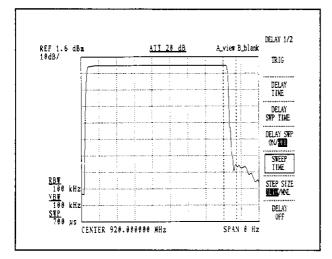


Figure 7-16 Waveform obtained by the setup mode (Move the WINDOW to the section be expanded.)

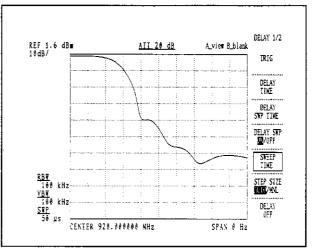


Figure 7-17 Waveform obtained by measurement in DELAY SWP ON (The section in the WINDOW is expanded.)

7.2 GATED SWEEP, and DELAY SWEEP Function (when option 71 is installed)

(1) DELAY SWEEP setting menu **OPTION** Press SHIFT 6 **DELAY SWEEP** TRIG Selects the trigger.

VIDEO

TV-V

EXT

SLOPE +/-

1

sequentially, and the DELAY mode is selected and you enter the setup mode (the WINDOW is displayed).

If zero span is set, the WINDOW is displayed.

RETURN DELAY Sets DELAY TIME. 2 TIME DELAY Sets DELAY SWEEP TIME. 3 **SWP TIME DELAY SWP** Sets DELAY SWEEP to ON/OFF. 4 ON/OFF **SWEEP** Sets SWEEP TIME. (5) TIME STEP SIZE 6 Sets DELAY Time step size to AUTO/MANUAL. AUTO/MNL **DELAY** Releases the setup mode and exits from the DELAY mode. 0 **OFF** (Turns off the DELAY SWP and WINDOW.) Note: This key must be pressed each time when measurement is finished. TRIG 1

Sets the trigger mode. Any of VIDEO, TV-V and EXT is selected.

7.2 GATED SWEEP, and DELAY SWEEP Function (when option 71 is installed)

2 3 DELAY **DELAY** TIME SWP TIME

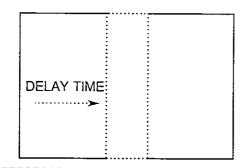
> DELAY TIME and DELAY SWEEP TIME display the WINDOW for adjustment with numeric keys, step keys or the data knob.

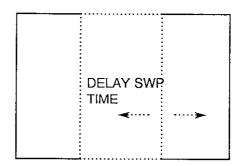
If zero span is set with DELAY SWEEP OFF, the WINDOW is displayed. Otherwise, only data is displayed. Even if a part of the WINDOW goes out of the screen due to setting, internal data is also set.

DELAY TIME

: ·Move with DELAY SWEEP TIME fixed.

·The resolution depends on SWEEP TIME. Numeric keys


enable setting in units of up to 100 ns.


•The setting range is from 200 ns to 1.5 sec.(default = 200 ns)

DELAY SWP TIME: Move the only right line.

·The resolution is the same as SWEEP TIME.

The setting range is from 50 us to 1000 sec.(default = 50 ns)

4 **DELAY SWP** ON/OFF

Turns off the WINDOW and performs DELAY SWEEP.

The DELAY SWEEP TIME in the WINDOW is set to SWEEP TIME.

(See *1 in the following figure.)

OFF: Stops DELAY SWEEP and SWEEP TIME is reset to the previous value.

(See *2 in the following figure.)

7.2 GATED SWEEP, and DELAY SWEEP Function (when option 71 is installed)

© SWEEP TIME

Sets the SWEEP TIME.

Not changeable when DELAY SWEEP ON.

© STEP SIZE AUTO/MNL

Sets the step size to move DELAY TIME with the step key.

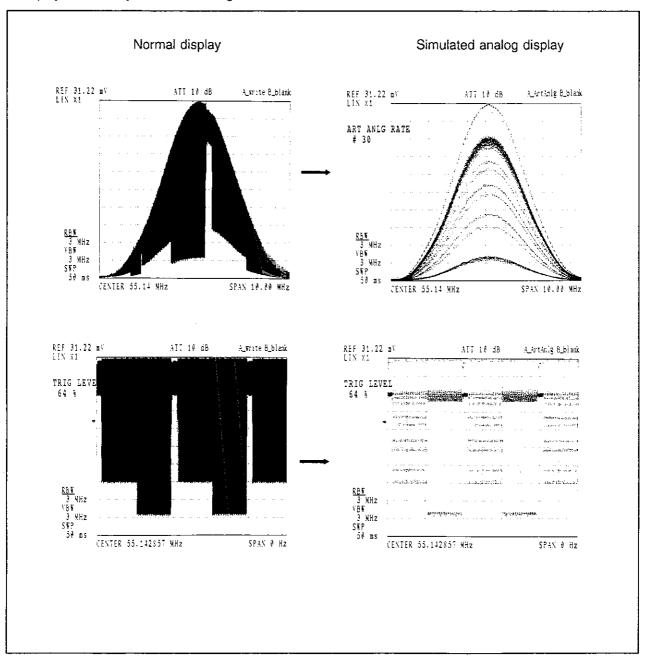
AUTO : Sets to 1/10 (1 div) of SWEEP TIME.

MANUAL : Step size data can be input.

The setting range is from 100 ns to 1 sec.

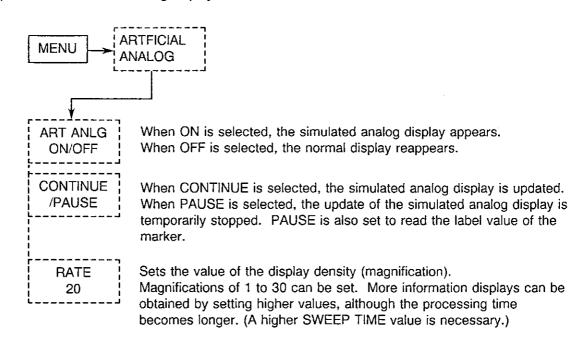
⑦ DELAY OFF

Exits the DELAY mode.


Turns off the WINDOW and you returns to the ordinary measurement mode.

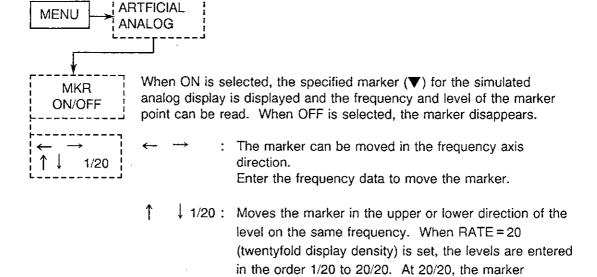
7.3 Simulated Analog Display Function

New data accumulation and display technology enables an analog display of the digital display in the simulated analog display of the R3265/3271 series.


Since all displayed data are stored in the memory, the frequency and level can be read out by using the marker.

Complex modulation signals such as image signals which could be displayed only on an analog display were easily observableusing this function.

7.3.1 Functional Explanation

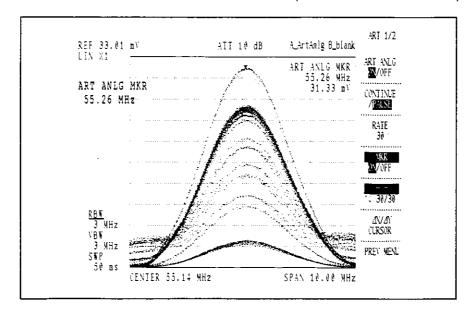

(1) Menu for simulated analog display function

May 14/93

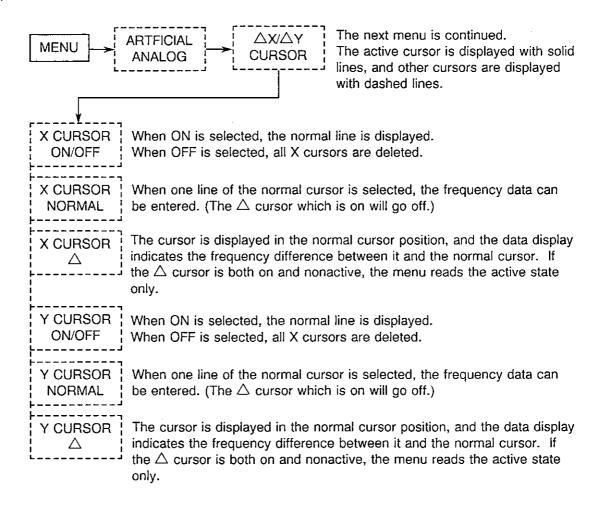
7-41

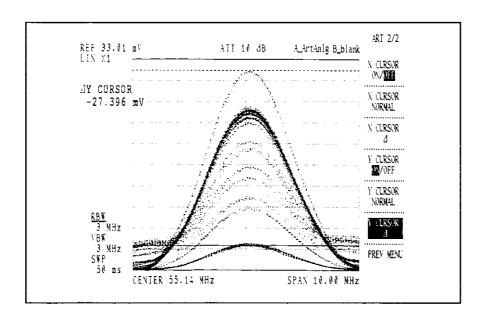
(2) Menu for marker function

If the level value is read while the marker is moving, the waveform display should be stopped as follows:


level data on the same frequency.

indicates the highest level data on the same frequency. Conversely, at 1/20, the marker indicates the lowest

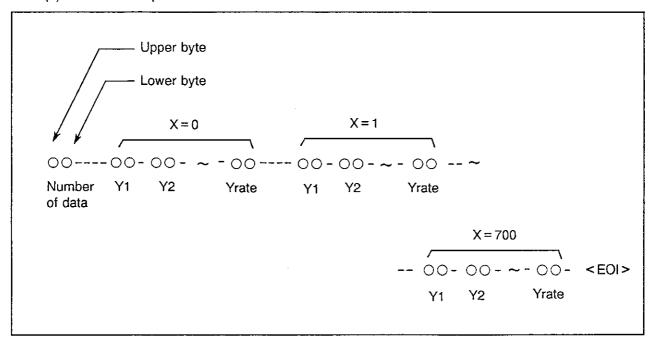

- Change CONTINUE to PAUSE.
- Turn the SWEEP mode to single, then stop after a single sweep.


The level difference (relative value) between the marker and the display line can be displayed by turning on the display line.

However, the REL/ABS should be set to REL (NEXT menu for marker on).

(3) Menu for cursor function

- CAUTION -


- 1. The trace mode for the trace A memory cannot be changed while the simulated analog display is being displayed.
- 2. The marker specified for the simulated analog display does not include functions of the normal marker such as peak search.
- 3. The save/recall (setting condition and waveform data) for the simulated analog display cannot be executed.
- 4. The plotter for the simulated analog display cannot be output.

7.3.2 GPIB remote programming

(1) List of GPIB commands

GPIB command	Contents
ANLG 1 to 30 ANLG ON ANLG OFF ANLG?	Sets the value of the display density (magnification). Turns the simulated analog display on. Turns the simulated analog display off. Outputs the simulated analog display ON/OFF (1/0) and the display density (1 to 30).
ANLG CONT ANLG PAUSE	Sets the consecutive mode. Sets the temporary stop.
MKX Frequency MKX? MKY 1 to 30 MKY? MKX ON MKX OFF	Sets the marker by frequency. Reads out the marker frequency. Sets the vertical marker position at a value between 1 and 30. Reads out the marker level. Turns the marker on. Turns the marker off.
CSRX Frequency CSRX? CSRDX △ Frequency CSRDX? CSRX ON CSRDX ON CSRX OFF	Sets the X cursor by frequency. Reads out the frequency of the X cursor. Turns the $\triangle X$ cursor on and sets $\triangle X$ by frequency. Reads out the frequency width of $\triangle X$. Turns the X cursor on. Turns the $\triangle X$ cursor on. Turns all of the \triangle cursors off.
CSRY Level CSRY? CSRDY △ Level CSRDY? CSRY ON CSRDY ON CSRY OFF	Sets the Y cursor in level. Reads out the level of the Y cursor. Turns the \triangle Y cursor ON and sets the \triangle Y by level. Reads out the frequency width of \triangle Y. Turns the Y cursor on. Turns the \triangle Y cursor on. Turns all of the Y cursors off.
OPANLG?	Reads out all of the waveform data.

(2) Wave data output format for OPANLG? command

- To output binary data consecutively in the order of upper byte then lower byte, read out as one-word data (upper + lower).
- The head of the data represents the total number of words in the waveform data.
 Subsequently, the waveform data continue, and the data are read out until the EOI signal is generated.
- For example, at rate = 10 the number of the waveform data shows 10x701 = 7010 words.

7.3 Simulated Analog Display Function

(3) Sample program

For example, indicate the program which reads out all of the waveform data.

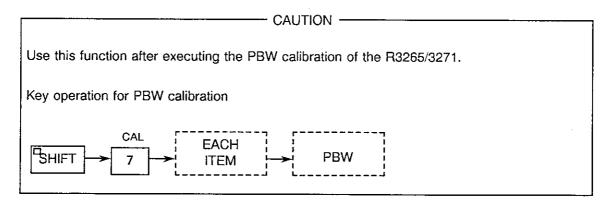
Note: Turn the simulated analog display on to execute the following program in the PAUSE state.

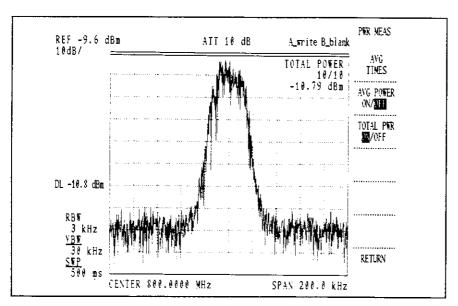
Example of HP200/HP300 series program (GPIB address = 8)

```
10
         INTEGER Tr(21031)
         OUTPUT 708; "TPC; DL2; HD0; ANLG?"
20
30
         ENTER 708; "Onoff, Rate
40
         OUTPUT 708; "OPANLG?"
50
         ENTER 708 USING "%, W"; Tr(*)
60
         OUTPUT KBD;" K";
70
         GINIT
80
         GRAPHICS ON
90
         CONTROL 1,12;1
100
         VIEWPORT 10,120,15,90
110
         WINDOW 0,700,0,400
120
         GRID 70,40,0,0,10,10,100
130
         N = 1
         FOR I=0 TO 700
140
150
            FOR J=1 TO Rate
160
                MOVE I,Tr(N)
170
                DRAW I,Tr(N)
180
                N=N+1
190
             NEXT J
200
         NEXT I
210
         END
```

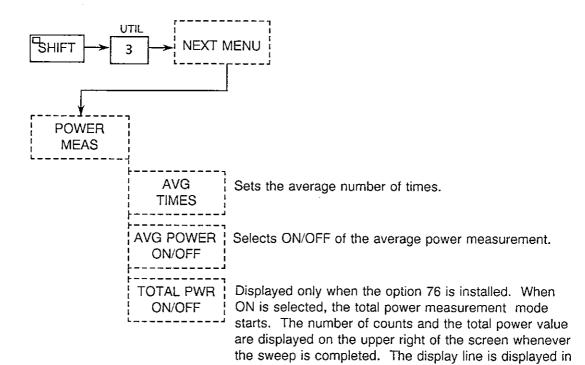
7.4 Power Measurement Function (when option 76 is installed)

7.4.1 Total Power Measurement Function


When the option 76 is installed, a total power measurement function is added to enable the following power measurements.


- Measurement of average power
- Measurement of average power density
- Measurement of total power: option 76

(1) Measuring total power

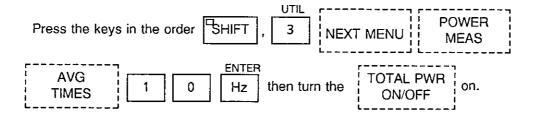

Total power measurement enables the total power of the signals which are displayed on the screen to be calculated and the power value of the wide band range modulation wave to be measured.

In the wide band range modulation wave, the display amplitude of the spectrum analyzer varies according to the setting of the resolution band range width (RBW). However, since the RBW is compensated by using this function, the total power can be measured.

(2) Menu for total power measurement function

turned off.

the level corresponding to the average electric power value.


The measurement mode will be completed when it is

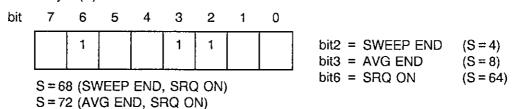
- In total power measurement, when the measuring window is turned on, measurement is executed in the frequency range of the window.
- Even after the average number of times has been completed (e.g. 10/10), the movement average mode is set and the measurement continues.
- If a frequency level, average number of times, or window setting is changed during the measurement, the count will be reset and the measurement will be re-executed from the beginning.
- If the VBW is set to AUTO during the measurement,
 VBW = RBWx10 will be set. Also, the trace DET will be switched to sample mode.

7.4 Power Measurement Function (when option 76 is installed)

(3)	Measurement	procedure
-----	-------------	-----------

① Set the average number of times to 10, then turn the average power measurement mode on.

② Measurement of the total power in the measuring window After turning the total power measurement mode on in procedure ①, set the window to ON.


Set the TOTAL PWR ON/OFF to ON, press the SHIFT, 0,	and	LOCATE X/Y	to
locate the center position for the measuring window, then press	the	WDO △ ¦	to
adjust the measuring window width.	Ļ		

(4) GPIB remote programming

GPIB command	Contents
PWTM PWTM?	Setting of AVG times (1 to 1000 times) Read out data of AVG times.
PWTOTAL ON PWTOTAL OFF PWTOTAL?	TOTAL POWER ON TOTAL POWER OFF Read out TOTAL POWER measurement data.
HD0 HD1	Header OFF Header ON (at execution of PWTOTAL?) PWB: at dBm PWM: at dBmV PWU: at dBuV PWE: at dBuVemf PWP: at dBpW PWV: at volt PWW: at watt

Read out the measurement data when the SRQ signal of SWEEP END is generated. However, it is necessary to read out the data after the SWEEP reaches the AVG times (e.g. 5/5). (At this time, the SRQ of AVG END is generated.)

• Status byte (S)

Count display (in SWEEP END)

1/5 2/5 3/5 4/5
$$5/5$$
 5/5 $5/5$ S = 68
While the average power is being measured (TOTAL POWER), take care to reset the AVG times when the CENTER, SPAN, REF LEVEL, window, or other settings have been changed.

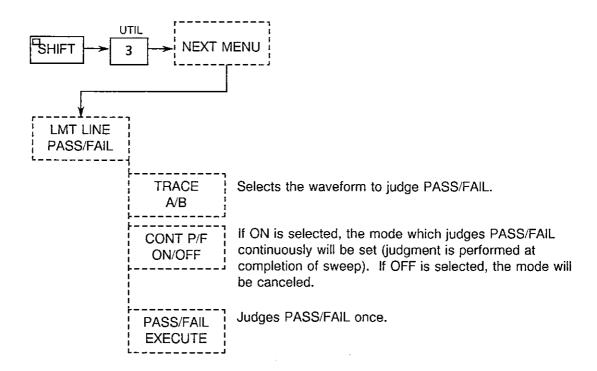
7.4 Power Measurement Function (when option 76 is installed)

Example of programming for HP300 series (GPIB address = 8)

Measure TOTAL POWER in the window to read data.

```
10
         Aend=0
20
         OUTPUT 708; "SO"
30
         OUTPUT 708; "CF100MZ SP10MZ"
         OUTPUT 708; "WDX5MZ WLX100MZ"
40
50
         OUTPUT 708; "HDO PWTOTAL?"
60
         OUTPUT 708; "PWTM 5ENT"
         OUTPUT 708; "PWTOTAL ON"
70
80
         ON INTR 7 GOTO Seqint
90
        Wloop: !
         ENABLE INTR 7;2
100
110
         GOTO Wloop
120
         !
130
        Srqint:!
140
        S=SPOLL(708)
150
         IF BIT(S,3)=1 THEN Aend=1
         IF BIT(S,2)=1 THEN GOSUB Avgout
160
170
         GOTO Wloop
180
190
        Avgout: I
         IF Aend=0 THEN RETURN
200
         ENTER 708;A
210
         PRINT A
220
         RETURN
230
240
250
         END
```

Explanation of program


```
Clear AVG END flag.
10
20
         Set in SRQ interrupt output mode.
30
         Center frequency=100MHz, span=10MHz
40
         Window width=5MHz, window center=100MHz
         Specify header OFF and output data to TOTAL POWER data.
50
         Set AVG time to 5times
60
         TOTAL POWER ON
70
         Specify destination to jump on occurrence of SRQ interrupt.
80
         Wait for SRQ interrupt (loop).
90
130
         Jump by SRQ interrupt.
140
         Execute serial pole.
150
         Set AVG END flag ON if AVG END (bit 3=1).
160
         Read out data if SWEEP END (bit 2=1).
         Read TOTAL POWER data.
210
```

7.4.2 Limit Line PASS/FAIL Function

The upper and lower limits of the waveform on the screen are automatically judged (determined) by limit line 1 and limit line 2. Set limit line 1 and limit line 2 as follows:

Limit line 1: Upper (Always set at the upper side of the target waveform.) Limit line 2: Lower (Always set at the lower side of the target waveform.)

(1) Menu for limit line PASS/FAIL function

(2) PASS/FAIL display screen

During key operation or when the continuous mode is on, the judgment result is shown on the following screens:

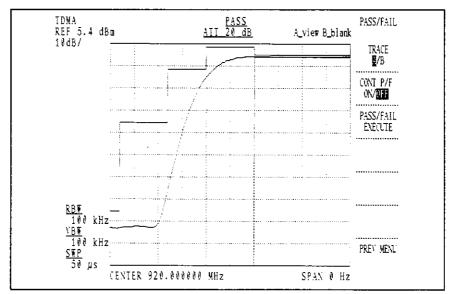


Figure 7-18 Display when PASS

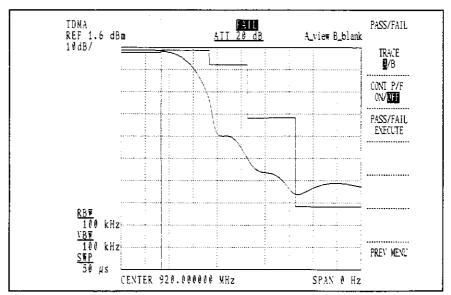


Figure 7-19 Display when FAIL

- CAUTION -

The result is not displayed when executing from the GPIB.

(3) PASS/FAIL judgment

① For PASS

- When limit line 1 and 2 are displayed, all the measurement waveform points are within the range lower to upper.
- When limit line 1 only is displayed, all the measurement waveform points are within the range upper or below.
- When limit line 2 only is displayed, all the measurement waveform points are within the range lower or above.
- When there is no limit line, judge as PASS.
- When the limit line is on the line, judge as PASS.

② For FAIL

- Both limit line 1 and limit line 2 are OFF.
- The target waveform to be judged is blank.
- The measured waveform point is beyond the limit line. (The PASS condition is not satisfied.)

3 When using measuring window

 When the measuring window is on, judge the PASS/FAIL in the window. However, judgment is not performed in the Y axis direction.

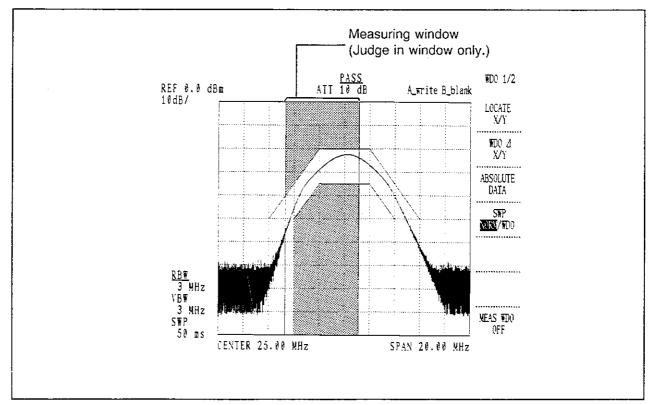


Figure 7-20 Judgment Range when Measuring Window is ON

7.4 Power Measurement Function (when option 76 is installed)

(4) GPIB remote programming

GPIB command	Contents
PFC ON PFC OFF PFC?	Turn continuous mode on. Turn continuous mode off. Turn continuous mode on/off.
PFJ A PFJ B PFJ?	Judges trace A. Judges trace B. Reads out the judgment result.
OPF?	Reads out details of judgment result. 0: PASS 1: UPPER 2: LOWER 3: UPPER & LOWER 4: ERROR
FPU? FPL?	Outputs the upper FAIL point binary. Outputs the upper LOWER point binary.

The PASS/FAIL returned value when using the GPIB (same as measuring window comparator) is as follows:

FAIL: 0 PASS: 1

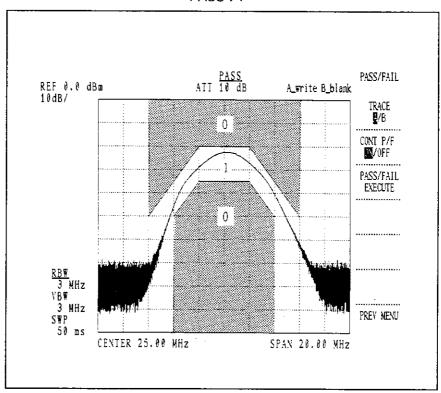
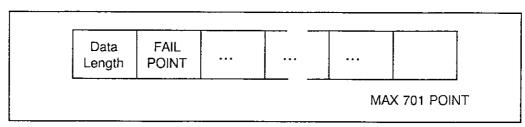


Figure 7-21 PASS/FAIL returned value

In the GPIB, this returned value is returned using a PFJ? command.


When a subsequent returned value is requested (FAIL is at the UPPER or LOWER side), another command OFF? is used.

The FAIL point is returned individually at the UPPER side and the LOWER side. The point value indicates the f axis (0 to 700).

GPIB command returning FAIL point

FPU?

FPL?

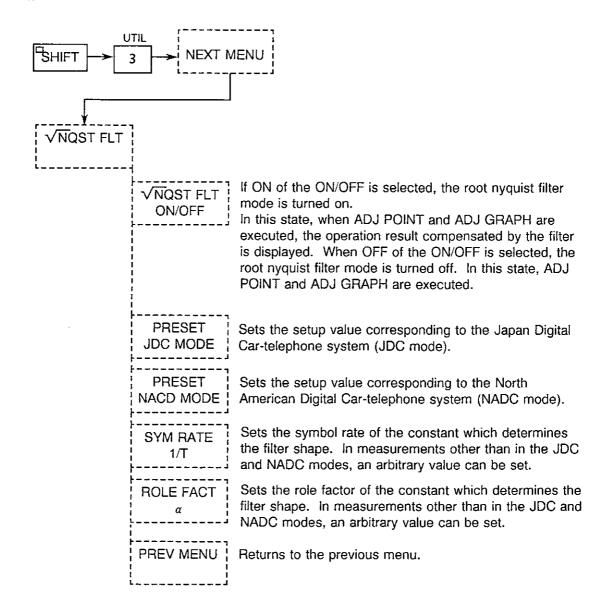
7.4 Power Measurement Function (when option 76 is installed)

Example of HP200/HP300 series program

```
10
         DIM Fpu(701), Fp1(701)
20
         Spa=708
30
         Pf$(0)="FAIL"
40
         Pf$(1)="PASS"
50
         Re$(1)="UPPER"
60
         Re$(2)="LOWER"
70
         Re$(3)="UP&LOW"
80
         Re$(4)="ERROR"
90
100
         OUTPUT Spa; "DL3"
        OUTPUT Spa; "TS PFJ A"
110
120
        OUTPUT Spa; "PFJ?"
      ENTER Spa;J1
130
140
       OUTPUT Spa; "OPF?"
150
        ENTER Spa; J2
160
        Pfu(0)=0
170
        Fp1(0)=0
         PRINT "JUDGEMENT ", Pf$(J1)
180
      IF J1=0 THEN
190
200
          PRINT "RESULT ",Re$(J2)
210
     1
220
230
           IF BIT(J2,0) THEN GOSUB Fail_up
240
           IF BIT(J2,1) THEN GOSUB Fail_low
250
           PRINT "UPPER FAIL POINT", Fpu(0)
260
           PRINT "LOWER FAIL POINT", Fp1(0)
270
       END IF
        STOP
280
290
     Fail_up: !
       OUTPUT Spa; "DL2 FPU?"
300
310
        ENTER Spa USING "%,W";Fpu(*)
320
        RETURN
330
     Fail_low: !
       OUTPUT Spa; "DL2 FPL?"
340
350
         ENTER Spa USING "%, W"; Fp1(*)
360
         RETURN
370
     1
380
         END
```

7.4 Power Measurement Function (when option 76 is installed)

Explanation of programs

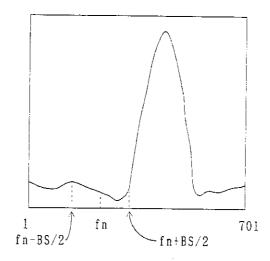

10	
to	Initial setting
80	
100	Delimiter setting
110	After TAKE SWEEP, judge PASS/FAIL of trace A.
120	Specify PASS/FAIL judgment output.
130	Store judgment result to variable J1.
140	Specify output of detailed PASS/FAIL judgment result.
150	Store detailed output result to variable J2.
160	Clear number of upper FAIL point.
170	Clear number of upper FAIL point.
180	Output judgment result on screen
190	If judgment result is FAIL, process THEN and after.
200	Output FAIL result on screen
230	When FAIL result is upper limit line, go to Fail_up.
240	When FAIL result is lower limit line, go to Fail_low.
250	Output number of FAIL point in upper limit line.
260	Output number of FAIL point in lower limit line.
290	Fail_up:
300	Switch delimiter and specify output of upper FAIL point.
310	Store number of FAIL point (2 bytes) to array variable Fpu.
320	Complete subroutine.
330	Fail_low:
340	Switch delimiter and specify output of lower FAIL point.
350	Store number of FAIL point (2 bytes) to array variable Fpl.
360	Complete subroutine.

7.4.3 Adjacent Channel Leakage Power Measurement Function with Attached

Root Nyquist Filter

This function is added to the "Adjacent Channel Leakage Power Measurement Function" of the R3265/3271. When measuring the adjacent channel leakage power, the value compensated using the root nyquist filter can be obtained.

(1) Menu for adjacent channel leakage power measurement function with attached root nyquist filter


(2) Exe	ecuting ADJ POINT in NADC mode
1	In the same way as for normal adjacent channel leakage power measurement (ADJ), set the marker to the specified channel frequency.
	Press the keys in the order ON , 9 0 2 , MHz .
2	The Adjacent channel leakage power measurement mode starts, and the channel span can be specified.
	Press the keys in the order SHIFT, 3 ADJ SETUP CH SP/BS, 4 0.
	2, kHz.
	(Setting of the standard bandwidth is not required.)
3	Set the NADC mode.
	Press the keys in the order NEXT MENU, VNQST FLT, PRESET NADC MODE.
	(1/T = 24.3kHz and α = 0.35 are set automatically.)
4	Turn the root nyquist filter mode on.
	Turn the root nyquist filter mode on.
	Press NQST FLT to set to ON.
\$	When ADJ POINT is executed, the operation result compensated by the filter is obtained.
	Press the keys in the order PREV MENU, PREV MENU, ADJ POINT.
	(1/T = 24.3kHz and α = 0.35 are set automatically.)

(3) Executing ADJ GRAPH in NADC mode

7.4 Power Measurement Function (when option 76 is installed)

① \$	Set the NADC mode.
	Press the keys in the order SHIFT, 3 NEXT MENU, VNQST FLT,
	PRESET NADC MODE .
	(1/T = 24.3kHz and α = 0.35 are set automatically.)
Ø 1	When ADJ GRAPH is executed, the operation result compensated by the filter is obtained.
	Press the keys in the order PREV MENU, PREV MENU, GRAPH.

(4) Contents in operation

If the power is regarded as p(f) on the screen above, the power P of the total bandwidth on 701 point is expressed below as f1 = start frequency, f701 = stop frequency.

$$P = \int_{11}^{1701} p(f) df$$
 ... ①

The normal adjacent channel leakage power (ADJ) on the frequency = fn is expressed by the following equation ② as BS is the standard bandwidth.

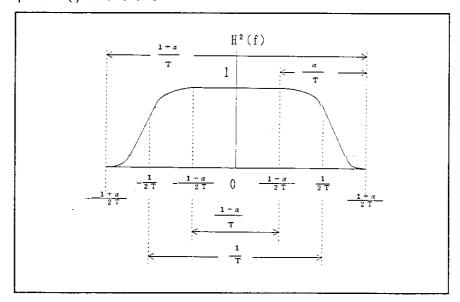
Standard ADJ =
$$10 \times \log \left(\int_{\text{in-8S/2}}^{\text{in+BS/2}} p(f) \, df/P \right) \cdots \mathbb{Q}$$

The other ADJ with the root nyquist filter on the frequency = fn is expressed by the following equation 3 as root nyquist filter characteristics.

ADJ with root nyquist filter =
$$10 \times \log$$
 ($\int_{a}^{b} p(f) H^{2}(f-fn) df/P$)

However, $a = fn-(1 + \alpha)/1T$, $b = fn + (1 + \alpha)/2T$, $a \ge start$ frequency, and $b \le stop$ frequency are defined. The H(f) is 0 other than the integral area. Refer to "(5)".

Since the integral in the expression 3 is the electric power domain, the square of H(f-fn) and the integral of the p(f) product are total sum of the electric power through the filter.


(5) Shape of root nyquist filter

1/T : Symbol rateα : Role factor

The root nyquist filter H(f) is expressed by the following equation.

$$| H(f) | = \begin{cases} 1 & 0 \le |f| \le (1 - \alpha)/2T \\ COS[(T/4\alpha) (2\pi |f| - \pi(1 - \alpha)/T)] & (1 - \alpha)/2T \le |f| \le (1 + \alpha)/2T \\ 0 & (1 + \alpha)/2T \le |f| \end{cases}$$

The shape of H2(f) is as follows:

7.4 Power Measurement Function (when option 76 is installed)

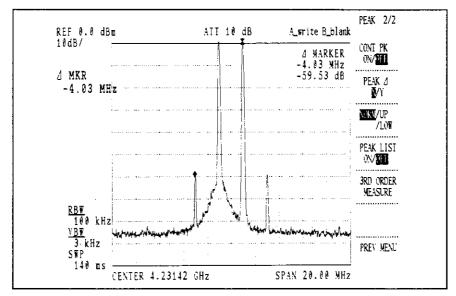
(6) GPIB remote programming

GPIB command	Contents
NQST ON NQST OFF NQST?	Turns the root nyquist filter on. Turns the root nyquist filter off. Reads out the ON/OFF state of the root nyquist filter mode.
NQST JDC NQST NADC	Sets the parameter corresponding to the JDC mode. Sets the parameter corresponding to the NADC mode.
BRATE Frequency BRATE?	Sets the symbol rate. Reads out the data of the symbol rate.
RFCT Numeric RFCT?	Sets the role factor. Reads out the data of the role factor.

Example of HP200, 300 series programs

Turn the root nyquist filter on to measure ADJ POINT.

10	OUTPUT 708; "CF900MZ; SP200kZ; TDS"
20	OUTPUT 708; "PS"
30	OUTPUT 708; "NQST JDC"
40	OUTPUT 708; "NQST ON"
50	OUTPUT 708; "HDO; ADJ?"
60	OUTPUT 708; "ADCH50kZ; ADJ"
70	ENTER 708; Up, Lo
80	PRINT Up,Lo
90	END


Explanation of programs

10	Set the frequency and turn the detector to SAMPLE.	
20	Execute the peak search. (Set the marker to the channel frequency.)	
30	Set to the JDC mode (same as when "BRATE21KZ; RFCTO.5ENT" is set instead of "NQST	
	JDC").	
40	Turn the root nyquist filter on.	
50	Turn the header off and specify the output data to ADJ POINT.	
60	Specify the channel span (CH SP) as 50 kHz and execute the ADJ point.	
70	Output the measurement data.	

7.4.4 Alternated Modulation Distortion Measurement Function

(1) Measuring alternated modulation distortion

Measure the relative value (frequency and level difference) between the signal and its three-dimensional distortion. After execution, display the delta marker and the active marker individually for the signal and three-dimensional distortion, and the result as the delta marker value will be displayed in the marker area.

The waveform in the window is measured by turning the measuring window (SHIFT \rightarrow 0 key) on.

In the same way as for the NEXT PK function, the setting values of $\triangle X$ and $\triangle Y$ are related.

(2) Menu for alternated modulation distortion measurement function

- CAUTION

In three-dimensional distortion, the active marker moves to the higher level.

7.4 Power Measurement Function (when option 76 is installed)

(3) GPIB remote programming

GPIB command	Contents
PKTHIRD	Perform the alternated modulation distortion.

Example of HP200, 300 series programs

10	OUTPUT 708;"HDO PKTHIRD"	'Execute the header OFF and this function.
20	OUTPUT 708;"MFL?"	'Specify the output of marker frequency, level output.
30	ENTER 708;Mf,M1	'Read out data.
40	PRINT Mf,Ml	'Display
50	END	

MEMO @

8. TROUBLESHOOTING

8. TROUBLESHOOTING

This chapter to diagnose and solve any problems you may have with your analyzer.

8.1 Inspection and Diagnosis

If you have problems with your analyzer, use the table below to find the problem and possible solution. If the solutions don't solve the problem, contact ATCE or the nearest dealer or the sales and support offices. The addresses and telephone numbers are listed at the end of this manual. You will be charged for all repairs done by our engineers.

Condition	Possible Cause	Solution
The system cannot be	The power cable is not properly inserted in the connector.	Turn the power switch off and connect the power cable properly.
powered up.	The power fuse is blown.	Replace the power fuse. (See paragraph 1.2.4-(2).)
The sweep LED lamp is lit	The intensity volume is set too low.	Adjust the intensity using the volume knob.
but no waveform is displayed on the screen.	The input cable or connector is not properly connected.	Connect the input cable and connector properly.
The analyzer will not	The trigger is set to Single mode.	Press the menu key and select FREE RUN.
sweep.	The LED lamp corresponding to key A or B is not lit.	Press the key A or B of TRACE and select WRITE.
The signal level is inaccurate.	The AMPTD CAL has not been adjusted.	Perform calibration (See section 5.8).
The keys do not function.	The system is set to the GPIB remote control mode.	If a program is being executed, halt it and press the LCL key.

9.	THE	DRY	OF	OPEI	RATION
----	-----	-----	----	-------------	--------

9. THEORY OF OPERATION

This section explains at the block level how the R3265/3271 spectrum analyzer works.

9.1 Block Descriptions

The R3265/R3271 mixes the input signal with a 21.4 MHz intermediate frequency (IF) signal. (The input signal must be in the range from 100 Hz to 8 GHz for the R3265, and in the range from 100 Hz to 26.5 GHz for the R3271.) The signal is then filtered with a variable-resolution bandwidth 21.4 MHz IF filter. The detector detects the signal, and the signal is digitized and displayed on the screen.

(1) Mixer Section

Input Frequencies from 100 Hz to 3.6 GHz

In the range from 100 Hz to 3.6 GHz, the input signal is fed through the input attenuator (which can attenuate 0 to 70 dB in 10 dB steps) and into the first mixer. The signal then mixes with the partial oscillation signal, which is synthesized by the YIG tuning oscillator operating at 4.2 GHz to 7.8 GHz. This creates the first IF signal with a frequency of 4231.4 MHz.

The first IF signal passes through the low noise amplifier (LNA), then to the band pass filter (BPF) to eliminate spurious signals generated by the first and second mixers. (Note that the R3271 does not use the LNA.)

From the band pass filter, the signal passes to the second mixer. There it mixes with a 3810 MHz signal from a phase-locked second partial oscillator, and converts into the second IF signal with a frequency of 421.4 MHz.

Input Frequencies 3.5 GHz and Above

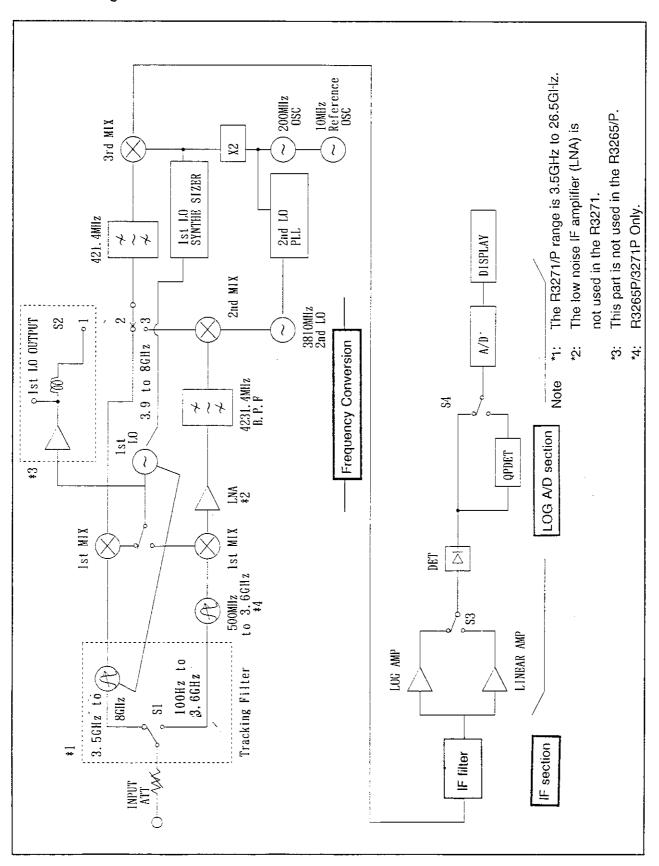
In the range of 3.5 GHz and above, the signal passes through the input attenuator to the tracking filter (a YIG tuning filter), which operates synchronously with the spectrum analyzer tuning frequency. This eliminates images and multiple response from the signal before the signal is fed into the first mixer.

The signal then passes into the first mixer and mixes with the synthesized partial oscillation signal of 3.9 GHz to 8 GHz. This creates the 421.4 MHz IF signal.

This 421.4 MHz IF signal then passes through a bandpass filter (to eliminate the image generated by the third mixer) and on to the third mixer, where it mixes with the partial oscillation signal of 400 MHz to create the IF signal of 21.4 MHz. (The third partial oscillation signal of 400 MHz is generated by doubling the signal from the 200 MHz oscillator, which is phase-locked to the 10 MHz reference oscillator.)

9.1 Block Descriptions

(2) IF Section


The 21.4 MHz signal from the mixer section is fed into the IF filter, which has a variable resolution bandwidth from 10 Hz to 3 MHz. The IF section contains a step amplifier (with a 0.1 dB step) to determine the reference level.

The bandwidth filter consists of four stages of 21.4 MHz LC filters, and has a resolution of 300 kHz to 3 MHz. In the range from 100 kHz to 10 Hz, the 21.4 MHz signal is converted to a frequency of 3.58 MHz and fed through the next IF filter. (The 1 kHz to 10 Hz IF filter consists of four stages of crystal oscillators.) The signal is then converted back to a frequency of 21.4 MHz.

(3) LOG A/D Section

After the IF section determines the signal's resolution bandwidth, the signal is fed through the logarithmic (LOG) amplifier, which provides a 100-dB dynamic range if the level is displayed in decibels. If the level is to be displayed linearly, the signal passes through the linear amplifier and on to the detector (DEC). After detection, the signal is digitized by the A/D converter. The digital signal is then manipulated by a CPU and displayed on the screen.

9.2 Block Diagram

10. SPECIFICATIONS

10. SPECIFICATIONS

This chapter describes the specifications and accessories for the R3265/3365 and R3271/3371.

10.1 R3265/3365 Specifications

10.1 R3265/3365 Specifications

(1) Frequency Characteristics

Frequency range	100Hz to 8GHz Frequency band Harmonic mode (n) 100Hz to 3.6GHz 1 3.5GHz to 7.5GHz 1 7.4GHz to 8GHz 1				
 Frequency read accuracy (Start, Stop, Center frequency, Marker frequency) 	± (Frequency reading × Frequency reference accuracy + Span × Span accuracy + 0.15 × Resolution bandwidth + 10Hz) Span accuracy (Span > 2MHz) ±3% (Span ≤ 2MHz) ±5%				
 Marker frequency counter Resolution Accuracy (S/N ≥25dB) Delta counter accuracy 	1Hz to 1kHz ± (Marker frequency × Frequency reference accuracy + 5Hz + 1LSD) ± (∆frequency × Frequency reference accuracy + 10Hz + 2LSD)				
Frequency reference accuracy	±2 × 10 ⁻⁸ /Day ±1 × 10 ⁻⁷ /Year				
 Frequency stability Residual FM (Zero span) Drift (After 1 hour warm-up) 	<pre>< 3Hz × N_{P-P} /0.1sec 50kHz < Span ≤ 2MHz, < 2.5kHz × Sweep speed (min.) × N</pre>				
Signal purity noise side band	Offset f ≤2.6GHz f >2.6GHz				
	1kHz < -100dBc/Hz < -95dBc/Hz				
	10kHz < -110dBc/Hz < -108dBc/Hz				
	20kHz < -110dBc/Hz < -108dBc/Hz				
	100kHz < -114dBc/Hz < -110dBc/Hz				

10.1 R3265/3365 Specifications

Liı	requency span inear span ogarithmic span	Range Accuracy Range Accuracy	200Hz to 8GHz, Zero span ±3% (Span > 2MHz), ±5% (Span≤2MHz) 1kHz to 1GHz (1, 2, or 3 decades can be selected) ±(10% + Stop frequency × 0.1%)
● R	Resolution bandwid	Ith (-3dB) Range Accuracy Selectivity	10Hz to 3MHz, 1, 3, 10 sequence ±50% (Resolution bandwidth 10 to 100Hz, Digital IF) ±15% (Resolution bandwidth 100Hz to 1MHz) ±25% (Resolution bandwidth 3MHz, 30Hz) Note: 30Hz at 25°C ±10°C < 15:1 (100Hz to 3MHz) < 20:1 (30Hz) 5:1 (10 to 100Hz, Digital IF) Nominal 200Hz, 9kHz, 120kHz (based on the CISPR specification)
• Vi	ideo bandwidth	Range	1Hz to 3MHz, 1, 3, 10 sequence

(2) Amplitude Range

Measurement range		+ 30dBm to Average indicated noise level	
 Maximum safe Average contin (Input ATT ≥ 10 DC input 	luous power	±30dBm (1W) 0 [V]	
 Display range Logarithmic Linear QP logarithmic 	c 1	0 × 10 div 0, 5, 2, 1, 0.5, 0.2, 0.1 dB/div 10% of the reference level)/div l0dB (5dB/div)	
 Reference level Logarithmic Linear 	c -	140dBm to +60dBm (0.1dB increments) 2.2μV to 223V (approx. 1% step of the full scale)	
Input attenuato	r range 0	to 70dB (10dB step)	

(3) Dynamic Range

 Maximum dynamic range 1dB gain compression level to noise level 	200MHz to 3.6GHz: 135dB - 1.55 × f(GHz)dB 10MHz to 3.6GHz: 130dB - 1.55 × f(GHz)dB	
Signal to Distortion Harmonic 100MHz to 3.6GHz 10MHz to 3.6GHz > 3.5GHz Third-Order intermodulation > 200MHz > 10MHz	87dB 82.5dB 112dB 93dB 90dB	
 Average display noise level (Resolution bandwidth 10Hz, Digital IF, Input attenuator 0dB, Average 20 times) Frequency range 1kHz 10kHz 100kHz 1MHz 10MHz to 3.6GHz 3.5GHz to 8GHz 	-100dBm -110dBm -111dBm -135dBm -{140 - 1.55 × f (GHz)}dBm -{145 - 1.55 × f (GHz)}dBm (Low noise mode) -135dBm	
1dB gain compression200MHz10MHz	-5dBm (Mixer input level) -10dBm (Mixer input level)	
Spurious response Second harmonic distortion Frequency range 100MHz to 3.6GHz 10MHz to 3.6GHz > 3.5GHz Third-Order intermodulation distortion Frequency range 200MHz to 3.6GHz 10MHz to 3.6GHz > 3.5GHz	Mixer level -30dBm <-70dBc -30dBm <-60dBc -10dBm <-100dBc Mixer level -30dBm <-70dBc -30dBm <-60dBc -30dBm <-75dBc	
Image/Multiple/Out-of-Band response 10MHz to 8GHz	< -70dBc	

10.1 R3265/3365 Specifications

Residual response (No input signal, Input ATT 0dB, 50Ω terminate)	
1MHz to 3.6GHz 300kHz to 8GHz	< -100dBm < -90dBm

(4) Amplitude Accuracy

Frequency response Flatness within the band (Input ATT 10dB) 100Hz to 3.6GHz 50MHz to 2.6GHz 3.5GHz to 7.5GHz 7.4GHz to 8GHz Additional error due to band switching Calibration signal as the reference (Input ATT 10dB)	± 1.5dB ± 1.0dB ± 1.5dB ± 1.5dB ± 0.5dB ± 3dB (100Hz to 8GHz)
 Calibration signal accuracy 	-10dBm ± 0.3dB
 IF gain error (After self-calibration) 0dBm to -50dBm 0dBm to -80dBm Scale indication accuracy (After self calibration) Logarithmic Linear QP mode logarithmic 	±0.5dB ±0.7dB ±0.2dB/1dB ±1dB/10dB ±1.5dB/90dB ±5% of reference level ±1.0dB/30dB, ±2dB/40dB ±1.0dB/40dB at 25°C ±10°C
 Input attenuator switching error (10dB as the reference; at 20 to 70 dB) Frequency range 0 to 8 GHz 	±1.1dB/10dB step, Maximum 2.0dB
 Resolution bandwidth switching error (Resolution bandwidth: 300kHz reference; after self-calibration) 	100Hz to 3MHz : ±0.3dB 30Hz : ±1dB 10Hz to 100Hz (Digital IF) : ±1.5dB

10-5

10.1 R3265/3365 Specifications

•	Pulse quantization error (In pulse measurement mode,	
	PRF > 700/Sweep time)	
	Peak to peak	
ľ	Logarithmic	1.2dB (Resolution bandwidth≤1MHz)
	-	3dB (Resolution bandwidth = 3MHz)
1	Linear	4% of the reference level (Resolution bandwidth≤1MHz)
		12% of the reference level (Resolution bandwidth=3MHz)

(5) Sweep

•	Sweep time Zero span Span≥200Hz Accuracy	50μ s to 1000s, manual sweep 20ms to 1000s, manual sweep $\pm 3\%$
•	Trigger	Free run, Line, Single, Video, TV-H, TV-V, External

(6) Demodulation

 Spectrum demodulation 	
Modulation type	AM, FM
Audio output	Internal speaker, earphone jack, sound volume adjustable
Demodulation duration	100ms to 1000s

(7) Input/Output

RF input Connector	N-type female
Impedance	50Ω (nominal)
VSWR	(Continue of the continue of
(Frequency setting input	< 1.5 : 1 (≤3.6GHz) (nominal)
ATT≥10 dB)	< 2.0 : 1 (> 3.6GHz) (nominal)
LO radiation (average)	
	< -80dBm typical
	(Frequency setting 0 to 8 GHz , input attenuation 10dB)

 Calibration signal output Connector Frequency Impedance Amplitude 	BNC female, Front panel 25MHz × (1 ± Frequency reference accuracy) 50Ω (nominal) - 10dBm ± 0.3dB			
10MHz frequency reference input/output Connector Impedance Frequency range Amplitude Input range	BNC female, Rear panel 50Ω (nominal) 10MHz × Frequency reference accuracy 0dBm ± 3dB -5dBm to +5dBm			
 21.4MHz IF output Connector Impedance Amplitude 3dB bandwidth 	BNC female, Rear panel 50Ω (nominal) 0dBm (Typ) in full scale = Resolution bandwidth			
 421MHz IF output Connector Impedance Gain, Noise factor, 3dB bandwidth Frequency range 1MHz to 3.6GHz 3.5GHz to 8GHz 	BNC fe 50Ω (no	male, Rear pane ominal) 3dB bandwidth (nominal) > 15MHz > 30MHz	Noise factor (nominal) 17dB 24dB	Gain (nominal) + 6dB -9dB
Video output Connector Impedance (AC connection) Amplitude (75Ω terminate)	BNC female, Rear panel 75Ω (nominal) Approx. 1V _{p-p} (Composite video signal)			
 X axis, 2V/n GHz output Connector Impedance X axis output 2V/n GHz 	BNC female, Rear panel 1kΩ (nominal), DC connection approx5V to +5V approx. 2V per 1GHz			
 Y axis output Connector Impedance Amplitude 	BNC female, Rear panel 220Ω (nominal) approx. 2V in full scale			

10.1 R3265/3365 Specifications

 Z axis output Connector Amplitude During sweep Retrace interval 	BNC female, Rear panel TTL level High level Low level
 External trigger input Connector Impedance Trigger level 	BNC female, Rear panel $10k\Omega$ (nominal), DC connection TTL level
 Gate input Connector Impedance Sweep stop Sweep 	BNC female, Rear panel 10 kΩ (nominal) During low mode at TTL level During high mode at TTL level
Probe powerVoltageCurrent	4-pin connector, Front panel + 15V, -15V Max.150mA each
 Voice output (Demodulation audio) Connector Power output 	Small-size monophonic jack, Front panel Maximum 0.2W, 8Ω (nominal)
GPIB Plotters	IEEE-488 bus connector R9833, HP7470A, HP7475A, HP7440A, HP7550A

(8) General Specifications

 Temperature and humidity During operation When stored Relative Humidity 	0°C to 50°C -20°C to 60°C 85% or below
Power source During 100VAC operation Voltage Power consumption Frequency During 220VAC operation Voltage Power consumption Frequency	90V to 132V 400VA at maximum 48Hz to 440Hz 198V to 250V 400VA at maximum 48Hz to 66Hz
● Mass R3265 R3365	22kg (nominal) (Excluding optional blocks, front cover, and accessories) 23kg (nominal) (Excluding optional blocks, front cover, and accessories)
Dimensions	Approx. 177mm (Height) × 353mm (Width) × 450mm (Depth) (Excluding the handle, legs and front cover)

(9) Tracking Generator Specifications (R3365 only)

Frequency range	100kHz to 3.6 GHz
Output level range	0dBm to -30dBm
Output level flatness (25MHz, -10dBm output)	± 3dB (100kHz to 3.6GHz)
Output level accuracy	±0.5dB (25MHz, -10dBm, 25°C ± 10°C)
Burn-in accuracy	± 0.5dB/1dB (25MHz, 25°C ± 10°C)
Output spurious accuracy: Harmonics: Non harmonics	-15dBc (at 0dBm output) -25dBc (at 0dBm output)
● TG leakage	-110dBm (100kHz to 3GHz) -105dBm (3GHz to 3.6GHz)
Power Sweep range Setting resolution	30dB 0.1dB

(10) Option 71

 Delay sweep Trigger signal source 	External trigger input VIDEO trigger TV-V trigger
Delay Time	200 ns to 1.5 s Resolution; 100 ns
Delay sweep time	50 μs to 1000 s
Gated sweep Trigger signal source	(F domain analysis) External trigger input GATE input (TIME domain analysis) External trigger input GATE input VIDEO trigger TV-V trigger
Gate position	300 ns to 100 ms Resolution; 100 ns
Gate width	1 μ s to 1.5 s Resolution; 100 ns

10.2 R3271/3371 Specifications

(1) Frequency Characteristics

● Frequency range	100Hz to 26.5GHz 18GHz to 60GHz (Using an external mixer; Tuning available up to 325GHz) Frequency band Harmonic mode (n) 100Hz to 3.6GHz 1 3.5GHz to 7.5GHz 1 7.4GHz to 15.4GHz 2 15.2GHz to 23.3GHz 3 23GHz to 26.5GHz 4
 Frequency read accuracy (Start, Stop, Center frequency, Marker frequency) 	± (Frequency read x Frequency reference accuracy + Span × Span accuracy + 0.15 × Resolution bandwidth +10Hz) Span accuracy (Span > 2MHz) ±3% (Span ≤ 2MHz) ±5%
 Marker frequency counter Resolution Accuracy (S/N≥25dB) Delta counter accuracy 	1Hz to 1kHz ± (Marker frequency × Frequency reference accuracy + 5Hz × N + 1LSD) ± (Delta frequency × Frequency reference accuracy + 10Hz × N + 2LSD)
Frequency reference accuracy	±2 × 10 ⁻⁸ /Day ±1 × 10 ⁻⁷ /Year
 Frequency stability Residual FM (Zero span) Drift (After 1 hour warm-up) 	<pre>< 3Hz × N_{P-P} /0.1 sec 50kHz < Span≤2MHz;<2.5kHz×Sweep speed (min)×N</pre>
Signal purity noise side band	Offset f ≤2.6GHz f >2.6GHz 1kHz <-100dBc/Hz
	100kHz <-114dBc/Hz <(-110 + 20logN)dBc/Hz

(2) Amplitude Bandwidth

 Frequency span Linear span Range Accuracy Logarithmic span Range Accuracy 	200Hz to 26.5GHz, Zero span ±3% (Span > 2MHz) ±5% (Span≤2MHz) 1kHz to 1GHz (1, 2, or 3 decades can be selected) ± (10% + Stop frequency × 0.1%)
Resolution bandwidth (-3dB) Range Accuracy Selectivity Bandwidth (6dB)	10Hz to 3MHz; 1, 3, 10 sequence ±50% (Resolution bandwidth 10 to 100Hz, Digital IF) ±15% (Resolution bandwidth 100Hz to 1MHz) ±25% (Resolution bandwidth 3MHz, 30Hz) Note: 30Hz at 25°C±10°C < 15:1 (100Hz to 3MHz) < 20:1 (30Hz) 5:1 (10 to 100Hz, Digital IF) Nominal 200Hz, 9kHz, 120kHz (based on the CISPR specification)
Video bandwidth Range	1Hz to 3MHz; 1, 3, 10 sequence

Measurement range	+30dBm to Average indication noise level
 Maximum safe input Average continuous power (Input ATT≥10dB) DC input 	+30dBm (1W) 0 [V]
Display rangeLogarithmicLinearQP logarithmic	10 × 10 div 10, 5, 2, 1, 0.5, 0.2, 0.1 dB/div (10% of the reference level) /div 40dB (5dB/div)
 Reference level range Logarithmic Linear 	-140dBm to +60dBm (0.1dB step) 2.2µV to 223V (approx. 1% step of the full scale)
Input attenuator range	0 to 70 dB (10dB step)

(3) Dynamic Range

 Maximum dynamic range 1dB gain compression level to noise level 	10MHz to 3.6GHz: 130dB - 1.55 × f(GHz) dB
Signal to Distortion Harmonic 10MHz to 3.6GHz > 3.5GHz Third-Order intermodulation > 10MHz	85dB 110dB 90dB
 Average display noise level (Resolution bandwidth 10Hz, Digital IF, Input attenuator 0dB, Average 20 times) Frequency range 1kHz 10kHz 100kHz 1MHz to 3.6GHz 3.5GHz to 7.5GHz 7.5GHz to 15.4GHz 15.2GHz to 23.3GHz 23GHz to 26.5GHz 	-100dBm -110dBm -111dBm -{135 - 1.55 × f (GHz)}dBm -130dBm -123dBm -116dBm -110dBm
1dB gain compression > 10MHz	-5dBm (Mixer input level)
 Spurious response Second harmonic distortion Frequency range 10MHz to 3.6GHz	Mixer level -30dBm < -70dBc -10dBm < -100dBc Mixer level -30dBm < -70dBc -30dBm < -75dBc
Image/Multiple/Out-of-Band response 10MHz to 18GHz 10MHz to 23GHz 10MHz to 26.5Hz	< -70dBc < -60dBc < -50dBc

10.2 R3271/3371 Specifications

Residual response		
(No input signal, Input ATT		
0dB, 50Ωterminate)		i
1MHz to 3.6GHz	< -100dBm	
300kHz to 26.5GHz	< - 90dBm	

(4) Amplitude Accuracy

Frequency response Flatness within the band (Input ATT 10dB) 100Hz to 3.6GHz 50MHz to 2.6GHz 3.5GHz to 7.5GHz 7.4GHz to 15.4GHz 15.4GHz to 23.3GHz 23GHz to 26.5GHz Additional error due to band switching When the calibration signal is used as the reference (Input ATT 10dB)	± 1.5dB ± 1.0dB ± 1.5dB ± 3.5dB ± 4.0dB ± 4.0dB ± 4.0dB ± 5dB (100Hz to 26.5GHz)
Calibration signal accuracy	-10dBm ±0.3dB
 IF gain error (After self-calibration) 0dBm to -50dBm 0dBm to -80dBm Scale indication accuracy (after self-calibration) Logarithmic Linear QP mode logarithmic 	± 0.5dB ± 0.7dB ± 0.2dB/1dB ± 1dB/10dB ± 1.5dB/90dB ± 5% of the reference level ± 1.0dB/30dB, ± 2dB/40dB ± 1.0dB/40dB at 25°C ± 10°C
 Input attenuator switching error (Based on 10dB; in the range of 20 to 70 dB) Frequency range 0 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 	± 1.1dB/10dB step; Maximum 2.0dB ± 1.3dB/10dB step; Maximum 2.5dB ± 1.8dB/10dB step; Maximum 3.5dB
 Resolution bandwidth switching error (Resolution bandwidth: 300kHz reference;after self-calibration) 	100Hz to 3MHz : ± 0.3dB 30Hz, 10Hz : ± 1dB 10 to 100 Hz (Digital IF) : ± 1.5dB

10.2 R3271/3371 Specifications

 Pulse quantization error (in pulse measurement mode: PRF > 700/Sweep time) 	
Peak to peak	
Logarithmic	1.2dB (Resolution bandwidth≤1MHz)
Linear	3dB (Resolution bandwidth = 3MHz) 4% of the reference level (Resolution bandwidth≤1MHz) 12% of the reference level (Resolution bandwidth=3MHz)

(5) Sweep

•	50µs to 1000s, Manual sweep 20ms to 1000s, Manual sweep ±3%
● Trigger	Free run, Line, Single, Video, TV-H, TV-V, External

(6) Demodulation

	Spectrum demodulation	
	Modulation type	AM, FM
	Audio output	Internal speaker, earphone jack, sound volume adjustable
ł	Demodulation duration	100ms to 1000s

(7) Input/Output

 RF input Connector Impedance VSWR (Input ATT≥10dB, frequency setting) LO radiation (average) 	N-type, female (can be converted into SMA type) 50Ω (nominal) < 1.5:1 (≤3.6GHz) (nominal) < 2.5:1 (>3.6GHz) (nominal) < -80dBm Typ (Frequency setting 0 to 26.5 GHz, input attenuation 10dB)
 First LO output Connector Impedance Frequency range Amplitude 	SMA, female, Front panel 50Ω (nominal) 3.921 to 7.921 GHz + 5dBm or above

 Calibration signal output Connector Frequency Impedance Amplitude 	BNC female, Front panel 25MHz × (1 ± Frequency reference accuracy) 50Ω (nominal) - 10dBm ± 0.3dB	
10MHz frequency reference input/output Connector Impedance Frequency range Amplitude Input range	BNC female, Rear panel 50Ω (nominal) 10MHz × Frequency reference accuracy 0dBm ± 3dB -5dBm to +5dBm	
 21.4MHz IF output Connector Impedance Amplitude 3dB bandwidth 	BNC female, Rear panel 50Ω (nominal) 0dBm (Typ) in full scale = Resolution bandwidth	
● 421MHz IF output Connector Impedance Gain, Noise factor, 3dB bandwidth Frequency range 1MHz to 3.6GHz 3.5GHz to 8GHz 7.4GHz to 15.4GHz 15.2GHz to 23.3GHz 23GHz to 26.5GHz	BNC female, Rear panel 50Ω (nominal) 3dB bandwidth (nominal) (nominal) (nominal) (nominal) > 15MHz 24dB -5dB > 30MHz 24dB -4dB > 35MHz 30dB -10dB > 40MHz 38dB -18dB > 50MHz 44dB -24dB	
Video output Connector Impedance (AC connection) Amplitude (75Ω terminate)	BNC female, Rear panel 75Ω (nominal) Approx. 1V _{P-P} (Composite video signal)	
 X axis, 2V/n GHz output Connector Impedance X axis output 2V/n GHz 	BNC female, Rear panel 1kΩ (nominal), DC connection approx5V to +5V approx. 2V per 1GHz	
 Y axis output Connector Impedance Amplitude 	BNC female, Rear panel 220Ω (nominal) approx. 2V in full scale	

 Z axis output Connector Amplitude During sweep Retrace interval 	BNC female, Rear panel TTL level High level Low level
 External trigger input Connector Impedance Trigger level 	BNC female, Rear panel 10kΩ (nominal), DC connection Trigger at the TTL level
 Gate input Connector Impedance Sweep stop Sweep 	BNC female, Rear panel 10kΩ (nominal) During low mode at TTL level During high mode at TTL level
Probe powerVoltageCurrent	4-pin connector, Front panel +15V, -15V Max. 150mA each
Voice output (Demodulation audio) Connector Power output	Small-size monophonic jack, Front panel Maximum 0.2W, 8Ω (nominal)
GPIB Plotters	IEEE-488, Bus connector R9833, HP7470A, HP7475A, HP7440A, HP7550A

(8) General Specifications

 Temperature and humidity During operation When stored Relative Humidity 	0°C to 50°C -20°C to 60°C 85% or below
Power source During 100VAC operation Voltage Power consumption Frequency During 220VAC operation Voltage Power consumption Frequency	90V to 132V 400VA at maximum 48Hz to 440Hz 198V to 250V 400VA at maximum 48Hz to 66Hz
● Mass R3271 R3371	22kg (nominal) (Excluding optional blocks, front cover, and accessories) 23kg (nominal) (Excluding optional blocks, front cover, and accessories)
Dimensions	Approx. 177mm (Height) × 353mm (Width) × 450mm (Depth) (Excluding the handle, legs and front cover)

(9) Tracking Generator Specifications (R3371 only)

Frequency range	100kHz to 3.6 GHz
Output level range	0dBm to -30dBm
Output level flatness (25MHz, -10dBm output)	±3dB (100kHz to 3.6GHz)
Output level accuracy	± 0.5dB (25MHz, -10dBm, 25°C ± 10°C)
Burn-in accuracy	± 0.5dB/1dB (25MHz, 25°C ± 10°C)
Output spurious accuracy : Harmonics : Non harmonics	-15dBc (at 0dBm output) -25dBc (at 0dBm output)
● TG leakage	-110dBm (100kHz to 3GHz) -100dBm (3GHz to 3.6GHz)
Power Sweep range Setting resolution	30dB 0.1dB

(10) Option 71

Delay sweep Trigger signal source	External trigger input VIDEO trigger TV-V trigger
Delay Time	200 ns to 1.5 s Resolution; 100 ns
Delay sweep tirne	50 μs to 1000 s
● Gated sweep Trigger signal source	(F domain analysis) External trigger input GATE input (TIME domain analysis) External trigger input GATE input VIDEO trigger TV-V trigger
Gate position	300 ns to 100 ms Resolution; 100 ns
Gate width	1 μ s to 1.5 s Resolution; 100 ns

10.3 R3265P/3271P Specifications

(1) Frequency Characteristics

● Frequency range R3265P	100Hz to 8GHz Frequency band Harmonic mode (n) 100Hz to 600MHz 1 500MHz to 3.6GHz 1 3.5GHz to 7.5GHz 1 7.4GHz to 8GHz 1
R3271P	100Hz to 26.5GHz 18GHz to 60GHz (Using an external mixer; Tuning available up to 325GHz) Frequency band Harmonic mode (n) 100Hz to 600MHz 1 500MHz to 3.6GHz 1 3.5GHz to 7.5GHz 1 7.4GHz to 15.4GHz 2 15.2GHz to 23.3GHz 3 23GHz to 26.5GHz 4
 Frequency read accuracy (Start, Stop, Center frequency, Marker frequency) 	± (Frequency reading × Frequency reference accuracy + Span × Span accuracy +0.15 × Resolution bandwidth + 10Hz) Span accuracy (Span > 2MHz) ±3% (Span ≤ 2MHz) ±5%
 Marker frequency counter Resolution Accuracy (S/N ≥25dB) R3265P 	1Hz to 1kHz ± (Marker frequency × Frequency reference accuracy + 5Hz + 1LSD)
R3271P	± (Marker frequency × Frequency reference accuracy + 5Hz × N + 1LSD)
Delta counter accuracy R3265P	±(∆frequency × Frequency reference accuracy + 10Hz + 2LSD)
R3271P	± (∆frequency × Frequency reference accuracy + 10Hz × N + 2LSD)
Frequency reference accuracy	$\pm 2 \times 10^{-8}$ /Day $\pm 1 \times 10^{-7}$ /Year
 Frequency stability Residual FM (Zero span) Drift (After 1 hour warm-up) 	< 3Hz × N _{P-P} /0.1sec 50kHz < Span ≤ 2MHz, < 2.5kHz × Sweep speed (min.) × N Span ≤ 50kHz, < 60Hz × Sweep speed (min.) × N

10.3 R3265P/3271P SPECIFICATIONS

Signal purity noise side band R3265P		ı	,
H3265P	Offset	f ≤2.6GHz	f >2.6GHz
	1kHz	< -100dBc/Hz	< -95dBc/Hz
	10kHz	< -110dBc/Hz	< -108dBc/Hz
	20kHz	< -110dBc/Hz	< -108dBc/Hz
	100kHz	< -114dBc/Hz	< -110dBc/Hz
R3271P	Offset	f ≤2.6GHz	f >2.6GHz
	1kHz	< -100dBc/Hz	<(-95 + 20logN)dBc/Hz
	10kHz	< -110dBc/Hz	<(-108 + 20logN)dBc/Hz
	20kHz	< -110dBc/Hz	< (-108 + 20logN)dBc/Hz
	100kHz	< -114dBc/Hz	< (-110 + 20logN)dBc/Hz
 Frequency span Linear span Range R3265P R3271P Accuracy Logarithmic Range 	200Hz to 8GHz, Zero span 200Hz to 26.5GHz, Zero span ±3% (Span > 2MHz), ±5% (Span≤2MHz) 1kHz to 1GHz (1, 2, or 3 decades can be selected)		
Accuracy		Stop frequency × (
Resolution bandwidth (-3dB) Range Accuracy Selectivity	10Hz to 3MHz, 1, 3, 10 sequence ±50% (Resolution bandwidth 10 to 100Hz, Digital IF) ±15% (Resolution bandwidth 100Hz to 1MHz) ±25% (Resolution bandwidth 3MHz, 30Hz) Note: 30Hz at 25°C ±10°C < 15:1 (100Hz to 3MHz) < 20:1 (30Hz) 5:1 (10 to 100Hz, Digital IF) Nominal 200Hz, 9kHz, 120kHz (based on the CISPR specification)		
Bandwidth (6dB)			
Video bandwidth Range	1Hz to 3M	Hz, 1, 3, 10 sequen	ce

10.3 R3265P/3271P SPECIFICATIONS

(2) Amplitude Range

•	Measurement range	+30dBm to Average indicated noise level
•	Maximum safe input Average continuous power (Input ATT≥10dB) DC input	±30dBm (1W) 0 [V]
•	Display range Logarithmic Linear QP logarithm	10 × 10 div 10, 5, 2, 1, 0.5, 0.2, 0.1 dB/div (10% of the reference level)/div 40dB (5dB/div)
•	Reference level range Logarithmic Linear	-140dBm to +60dBm (0.1dB increments) 2.2µV to 223V (approx. 1% step of the full scale)
•	Input attenuator range	0 to 70dB (10dB step)

(3) Dynamic Range

Maximum dynamic range	
1dB gain compression level	200MHz to 3.6GHz: 129dB - 1.55 × f(GHz)dB
to noise level	10MHz to 3.6GHz : 126dB - 1.55 × f(GHz)dB
Signal to Distortion	
R3265P	
Harmonic	
10MHz to 600MHz	83dB
500MHz ≤ f < 800MHz	96dB
800MHz ≤ f < 1.0GHz	101dB
1.0GHz to 3.6GHz	104dB
> 3.5GHz	112dB
Third-Order intermodulation	
10MHz to 250MHz	91dB
> 250MHz	90dB
R3271P	
Harmonic	
10MHz to 600MHz	83dB
500MHz ≤ f < 800MHz	96dB
800MHz ≤ f < 1.0GHz	101dB
1.0GHz to 3.6GHz	104dB
> 3.5GHz	110dB
Third-Order intermodulation	04.40
10MHz to 250MHz	91dB 90dB
> 250MHz	900B
Average display noise level	
(Resolution bandwidth 10Hz, Digital IF,	
Input attenuator 0dB, Average 20 times)	
Frequency range R3265P	
1kHz	-100dBm
10kHz	-110dBm
100kHz	-111dBm
1MHz to 3.6GHz	-{134 - 1.55 × f (GHz)}dBm
3.5GHz to 8GHz	-135dBm
R3271P	
1kHz	-100dBm
10kHz	-110dBm
100kHz	-111dBm
1MHz to 3.6GHz	-{134 - 1.55 × f (GHz)}dBm
3.5GHz to 7.5GHz	-130dBm
7.5GHz to 15.4GHz	-123dBm
15.2GHz to 23.3GHz	-116dBm
23GHz to 26.5GHz	-110dBm
1dB gain compression	
> 200MHz	-5dBm (Mixer input level)
> 10MHz	-10dBm (Mixer input level)

10.3 R3265P/3271P SPECIFICATIONS

 Spurious response Second harmonic distortion Frequency range (Fundamental) 10MHz to 300MHz 250MHz ≤ f < 400MHz 400MHz ≤ f < 500MHz 500MHz to 1.8GHz > 1.75GHz Third-Order intermodulation distortion Frequency range 10MHz to 200MHz 200MHz to 3.6GHz > 3.5GHz 	Mixer level -30dBm <-63dBc -10dBm <-70dBc -10dBm <-80dBc -10dBm <-90dBc -10dBm <-100dBc Mixer level -30dBm <-65dBc -30dBm <-70dBc -30dBm <-75dBc
Image/Multiple/Out-of-Band response R3265P 10MHz to 8GHz R3271P 10MHz to 18GHz 10MHz to 23GHz 10MHz to 26.5GHz	< -70dBc < -70dBc < -60dBc < -50dBc
Residual response (No input signal, Input ATT 0dB, 50Ω terminate) R3265P 1MHz to 3.6GHz 3.6GHz to 8GHz R3271P 1MHz to 3.6GHz 300kHz to 26.5GHz	< -100dBm < -90dBm < -100dBm < -90dBm

10-22

(4) Amplitude Accuracy

 Frequency response Flatness within the band 	
3	
(Input ATT 10dB) R3265P	
50MHz to 600MHz	± 1.0dB
500MHz to 3.6GHz	± 1.6dB
Additional error due to band	± 0.5dB
switching	1.000
Calibration signal as the	
reference (Input ATT 10dB)	± 3dB (100Hz to 8GHz)
R3271P	2005 (700.12 to 00.12)
50MHz to 600MHz	± 1.0dB
500MHz to 3.6GHz	± 1.6dB
3.5GHz to 7.5GHz	± 1.5dB
7.4GHz to 15.4GHz	±3.5dB
15.4GHz to 23.3GHz	± 4.0dB
23GHz to 26.5GHz	± 4.0dB
Additional error due to band	± 0.5dB
switching	
Calibration signal as the	
reference (Input ATT 10dB)	±5dB (100Hz to 26.5GHz)
Calibration signal accuracy	-10dBm ±0.3dB
 IF gain error (After self- 	
calibration)	·
0dBm to -50dBm	± 0.5dB
0dBm to -80dBm	± 0.7dB
 Scale indication accuracy 	
(After self calibration)	
Logarithmic	± 0.2dB/1dB
	± 1dB/10dB
12	± 1.5dB/90dB
Linear	±5% of reference level
QP mode logarithmic	±1.0dB/30dB, ±2dB/40dB
	±1.0dB/40dB at 25°C ±10°C
 Input attenuator switching error 	
(10dB as the reference;	
at 20 to 70 dB)	
Frequency range	
R3265P	
0 to 8GHz	±1.1dB/10dB Step, Maximum 2.0dB
R3271P	1.4.4 ID/40 ID 01
0 to 12.4GHz	± 1.1dB/10dB Step, Maximum 2.0dB
12.4 to 18GHz	± 1.3dB/10dB Step, Maximum 2.5dB
18 to 26.5GHz	± 1.8dB/10dB Step, Maximum 3.5dB

10.3 R3265P/3271P Specifications

 Resolution bandwidth switching error (Resolution bandwidth: 300kHz reference; after self-calibration) 	100Hz to 3MHz : ±0.3dB 30Hz, 10Hz : ±1dB 10Hz to 100Hz (Digital IF) : ±1.5dB
 Pulse quantization error (In pulse measurement mode, PRF > 700/Sweep time) Peak to peak Logarithmic Linear	1.2dB (Resolution bandwidth ≤ 1MHz) 3dB (Resolution bandwidth = 3MHz) 4% of the reference level (Resolution bandwidth ≤ 1MHz) 12% of the reference level (Resolution bandwidth = 3MHz)

(5) Sweep

	50 μ s to 1000s, manual sweep 20ms to 1000s, manual sweep ±3%
Trigger	Free run, Line, Single, Video, TV-H, TV-V, External

(6) Demodulation

 Spectrum demodulation 	
Modulation type	AM, FM
Audio output	Internal speaker, earphone jack, sound volume adjustable
Demodulation duration	100ms to 1000s

(7) Input/Output

 RF input Connector Impedance VSWR (Frequency setting input ATT ≥ 10 dB) LO radiation (average) 	N-type female (Comvertible in the SMA type) 50Ω (nominal) (Frequency setting, input ATT ≥ 10dB) < 1.5 : 1 (≤3.6GHz) (nominal) < 2.0 : 1 (> 3.6GHz) (nominal) (Frequency setting 0 to 8 GHz , input ATT 10dB) < -80dBm typical
 First LO output (R3271P Only) Connector Impedance Frequency range Amplitude 	SMA female, Front panel 50Ω (nominal) 3.921 to 7.921 GHz + 5dBm or above

 Calibration signal output Connector Frequency Impedance Amplitude 	25MHz 50Ω (ne	•	l y reference accur	acy)
10MHz frequency reference input/output Connector Impedance Frequency range Amplitude Input range	50Ω (no 10MHz 0dBm ±	× Frequency ref		
 21.4MHz IF output Connector Impedance Amplitude 3dB bandwidth 	BNC female, Rear panel 50Ω (nominal) 0dBm (Typ) in full scale = Resolution bandwidth			
● 421MHz IF output Connector Impedance Gain, Noise factor, 3dB bandwidth R3265P Frequency range 1MHz to 3.6GHz 3.5GHz to 8GHz	BNC fe 50Ω (n	amale, Rear panel ominal) 3dB bandwidth (nominal) > 14MHz > 30MHz	Noise factor (nominal) 22dB 24dB	Gain (nominal) + 2dB -9dB
Frequency range 1MHz to 3.6GHz 3.5GHz to 8GHz 7.4GHz to 15.4GHz 15.2GHz to 23.3GHz 23GHz to 26.5GHz		bandwidth (nominal) > 14MHz > 30MHz > 35MHz > 40MHz > 50MHz	Noise factor (nominal) 22dB 24dB 30dB 38dB 44dB	Gain (nominal) + 2dB - 4dB - 10dB - 18dB - 24dB
Video output Connector Impedance (AC connection) Amplitude (75Ω terminate)	BNC female, Rear panel 75Ω (nominal) Approx. 1V _{p-p} (Composite video signal)			

10-25

10.3 R3265P/3271P Specifications

 X axis, 2V/n GHz output Connector Impedance X axis output 2V/n GHz 	BNC female, Rear panel 1kΩ (nominal), DC connection approx5V to +5V approx. 2V per 1GHz
Y axis outputConnectorImpedanceAmplitude	BNC female, Rear panel 220Ω (nominal) approx. 2V in full scale
 Z axis output Connector Amplitude During sweep Retrace interval 	BNC female, Rear panel TTL level High level Low level
 External trigger input Connector Impedance Trigger level 	BNC female, Rear panel $10k\Omega$ (nominal), DC connection TTL level
 Gate input Connector Impedance Sweep stop Sweep 	BNC female, Rear panel 10 kΩ (nominal) During low mode at TTL level During high mode at TTL level
Probe powerVoltageCurrent	4-pin connector, Front panel +15V, -15V Max.150mA each
 Voice output (Demodulation audio) Connector Power output 	Small-size monophonic jack, Front panel Maximum 0.2W, 8Ω (nominal)
● GPIB Plotters	IEEE-488 bus connector R9833, HP7470A, HP7475A, HP7440A, HP7550A

(8) General Specifications

 Temperature and humidity During operation When stored Relative Humidity 	0°C to 50°C -20°C to 60°C 85% or below
Power source During 100VAC operation Voltage Power consumption Frequency During 220VAC operation Voltage Power consumption Frequency	90V to 132V 400VA at maximum 48Hz to 440Hz 198V to 250V 400VA at maximum 48Hz to 66Hz
Mass	23kg (nominal) (Excluding optional blocks, front cover, and accessories)
Dimensions	Approx. 177mm (Height) × 353mm (Width) × 450mm (Depth) (Excluding the handle, legs and front cover)

(9) Option 71

 Delay sweep Trigger signal source 	External trigger input VIDEO trigger TV-V trigger
Delay Time	200 ns to 1.5 s Resolution; 100 ns
Delay sweep time	50 μs to 1000 s
Gated sweep Trigger signal source	(F domain analysis) External trigger input GATE input (TIME domain analysis) External trigger input GATE input VIDEO trigger TV-V trigger
Gate position	300 ns to 100 ms Resolution; 100 ns
Gate width	1 μs to 1.5 s Resolution; 100 ns

MEMO Ø

APPENDIX

A.1 Glossary

IF Bandwidth

The spectrum analyzer uses band pass filter (BPF) to analyze the frequency components contained in the input signal. The 3dB bandwidth of the BPF is called the IF band (See Figure A-1(a)).

The BPF characteristics should be set according to the sweep width and the sweep speed used for the waveform. This spectrum analyzer sets the optimal value according to the sweep width. In general, smaller bandwidths inprove resolution. Therefore, the resolution of the spectrum analyzer can be expressed by the narrowest IF bandwidth (See Figure A-1 (b)).

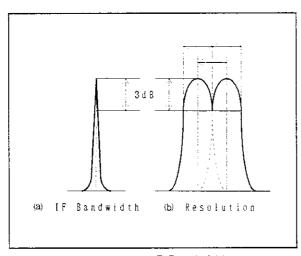


Figure A-1 IF Bandwidth

Electromagnetic compatibility (EMC)

The ability of a system to opetate without producing or being affected by electromagnetic interference.

Electromagnetic interference (EMI)

Electromagnetic interference (EMI) is a disturbanse in the reception of desired signals caused by unwanted electromagnetic energy, or something. EMI can be caused by any source of EM energy, such as (list a pertinent rew). Modern circuits are designed to produce as little EM energy as possible, but since the EM can not be completely eliminated, the cabinets containing EM-can not equipment are shielded to exclude EMI.

A-1

Reference Level Display Accuracy

When reading the absolute level of an input signal on the spectrum analyzer, the level is determined by the distance in dB from the uppermost scale on the screen. The level set for this uppermost scale is called reference level.

The reference level is modified by the IF GAIN key and the input attenuator, and displayed in dBm or $dB\mu$. The absolute accuracy of this display is the reference level accuracy.

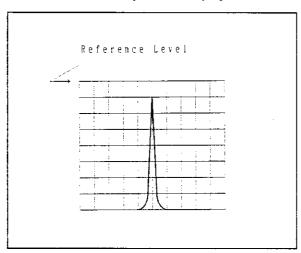


Figure A-2 Reference Level

Gain Compression

If the input signal is greater than a certain value, the correct value is not displayed on the CRT and the input signal appears as if it were compressed. This phenomenon is called gain compression, and is a expresses the linearity of the input signal range. Max gain compression is 1dB.

Maximum Input Sensitivity

This is maximum sensitivity of the spectrum analyzer to detect signals. The sensitivity is affected by the noise generated by the spectrum analyzer itself and depends on the IF bandwidth. The maximum input sensitivity is normally expressed as the average noise level in the minimum IF bandwidth of the spectrum analyzer.

Maximum Input Level

This is the maximum level allowed for the input circuit of the spectrum analyzer. The level can be modified by the input attenuator.

Residual FM

The short-period frequency stability of the local oscillators built in the spectrum analyzer is expressed as residual FM. The frequency width fluctuating per unit time is expressed by p-p. This also determines the measurement limit value when measuring the residual FM of the signal.

Residual Response

Residual response is a measure of how much (in the input level calculation) the spurious signal generated in the spectrum analyzer is suppressed. Residual response is generated by leaks of particular signals such as local oscillation output in the spectrum analyzer. This should be taken into consideration when analyzing a precise input signal.

Quasi-Peak Value Measurements

In radio communication, EMI usually appears as an impulse. To evaluate this interference, the analyzer uses the noise power in proportion to the peak value. The measurement bandwidth and detection constant used for this evaluation are called quasi-peak value measurements, and are detarmined by JRTC specifications (in Japan) and CISPR specifications (international).

Frequency Response

This term represents amplitude characteristics (frequency characteristics) for a given frequency. In the spectrum analyzer, frequency response means the frequency characteristics (flatness) of input attenuator and mixer for the input frequency, and is given in $\pm \Delta$ dB.

Zero Span

The spectrum analyzer sweeps at any frequency along the horizontal axis as the time axis but will not sweep in zero span mode.

Occupied Bandwidth

Modulation causes the frequency spectrum of an EM signal to spread significantly. The occupied bandwidth is the portion of the signals that contains 99% of the total average power radiated (See Figure A-3).

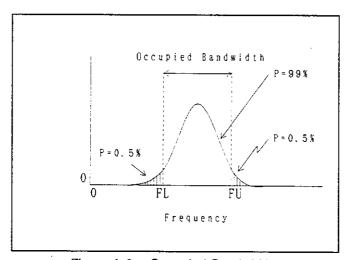


Figure A-3 Occupied Bandwidth

Spurious Signals

Spurious signals are undesired signals that can interfere with the target signal. Spurious signals can be divided into several types as follows:

Higher Harmonic spurious : This is the higher harmonic level generated by the spectrum

analyzer itself (normally in the mixer circuit) when an ideal undistorted signal is fed to the analyzer. This also means the

efficiency to measure higher harmonic distortion.

Adjacent spurious : This is the small spurious signal generated in the vicinity of the

spectrum when a pure, single-spectrum signal is fed to the

spectrum analyzer.

Non-higher Harmonic spurious: This is a spurious signal of a certain inherent frequency

generated by the spectrum analyzer itself. This is also called

residual response.

Spurious Response

This is distortion caused by the higher harmonic spurious signal generated in the input mixer when the signal level is increased. The range that can be used without distortion varies according to the input level of the basic wave. In the example shown Figure A-4, the range is from -30dBm to -70dB. If the input signal level is too great, the input attenuator is used to decrease the signal fed to the mixer so that a proper input level can be obtained.

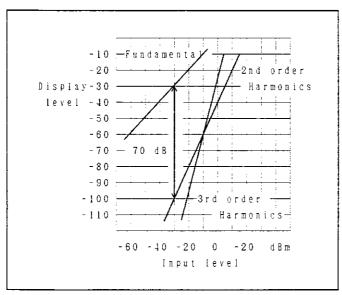


Figure A-4 Spurious Response

Noise Sideband

The spectrum analyzer efficiency is lowered by the noise generated in the local oscillator and phase lock loop of the analyzer itself, which will appear in the vicinity of the spectrum on the CRT. To compensate for this, the sideband of the analyzer itself is defined so that signals out of the sideband can be analyzed in a certain range. This range is called the noise sideband.

The spectrum analyzer's noise sideband characteristics are expressed in the following example.

Example: Suppose the IF bandwidth is 1kHz, -70dB at 20kHz apart from the carrier. The noise level is normally expressed by the energy contained in the 1Hz bandwidth. (See Figure A-5 (b).) If this is expressed in 1Hz bandwidth: Since the value is -70dB when the bandwidth is 1kHz, the signals within the 1Hz bandwidth will be lower than this by about 10 log 1Hz/1kHz [dB], or about 30dB; consequently, it is expressed as -100dB/Hz at 20kHz apart from the carrier when the IF bandwidth is 1kHz.

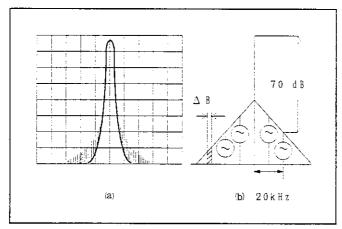


Figure A-5 Noise Sideband

Resolution Bandwidth Selectivity

The band pass filter normally attenuates Gauss distribution instead of so-called rectangular characteristics. Consequently, if two adjacent signals of different sizes are mixed, the smaller signal "hides" at the tail of the larger signal (See Figure A-6). Therefore, the bandwidth at a certain attenuation range (60dB) should also be defined. The ratio between the 3dB width and 60dB width is expressed as the bandwidth selectivity.

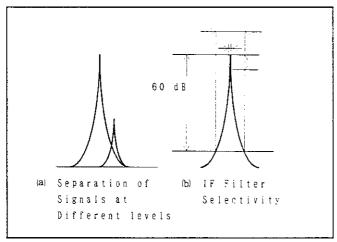


Figure A-6 Bandwidth Selectivity

Bandwidth Accuracy

The bandwidth accuracy of the IF filter is expressed by the deviation from the nominal value of the 3dB-lowered point. This efficiency has almost no effect on measurement of normal signals of continuous level, but it should be taken into consideration when measuring the level of a noise signal.

Bandwidth Switching Accuracy

Several IF filters are used to obtain optimal resolution (in signal spectrum analysis) according to the scan width. When switching from one IF filter to another while measuring one and the same signal, an error is generated for the difference in loss. This error defined as the bandwidth switching accuracy.

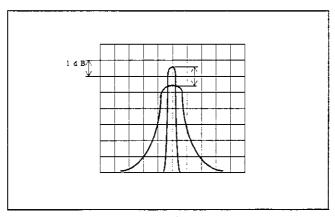


Figure A-7 Bandwidth Switching Accuracy

Voltage Standing Wave Ratio (VSWR)

This is a constant that represents the impedance matching state. It is expressed as the ratio between the maximum and minimum values in the standing wave generated as a combination of progressive wave and reflected wave in the spectrum analyzer loaded against the ideal nominal impedance source. This is a variation of reflection factor and reflection attenuation amount.

In FigureA-8, the value of signal E_1 received at the receiver (spectrum analyzer input) is identical to that of E_0 if E_0 is transmitted to the receiver without impedance mismatching. If the signal is compretely reflected due to mismatching of the receiver and returned to the transmitter, the ratio of reflection, i. e., the reflection factor can be expressed as follows, assuming ER as the reflected wave size:

Reflection factor Γ = Reflected wave ER / Progressive wave E₀

Return loss (dB) = $20\log ER / E_0$ [dB]

 $VSWR = (E_0 + ER)/(E_0 - ER)$

The relationship to the reflection factor will be:

 $VSWR = (1 + | \Gamma |)/(1 - | \Gamma |)$

The VSWR will be in the range 1 to ∞ . The matching state is improved as the value approaches 1.

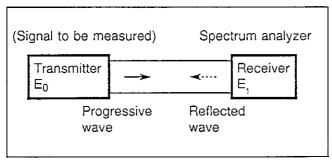
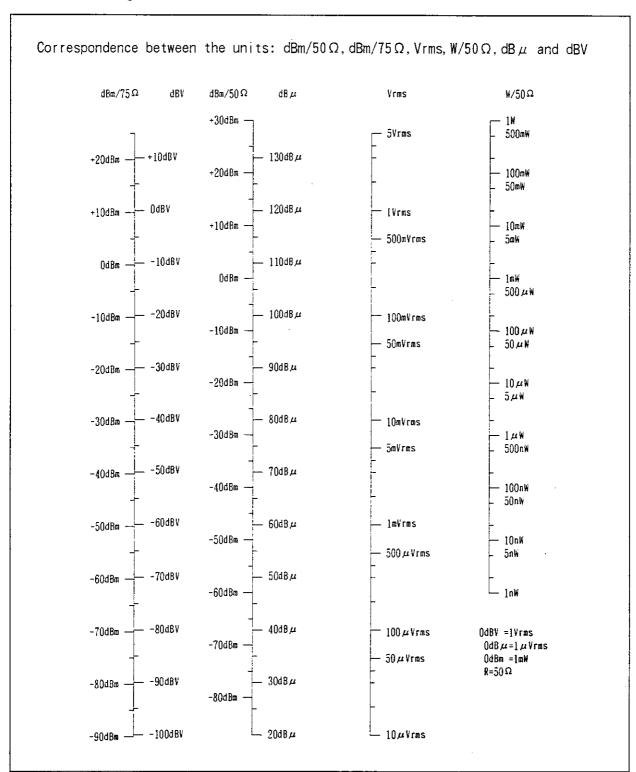
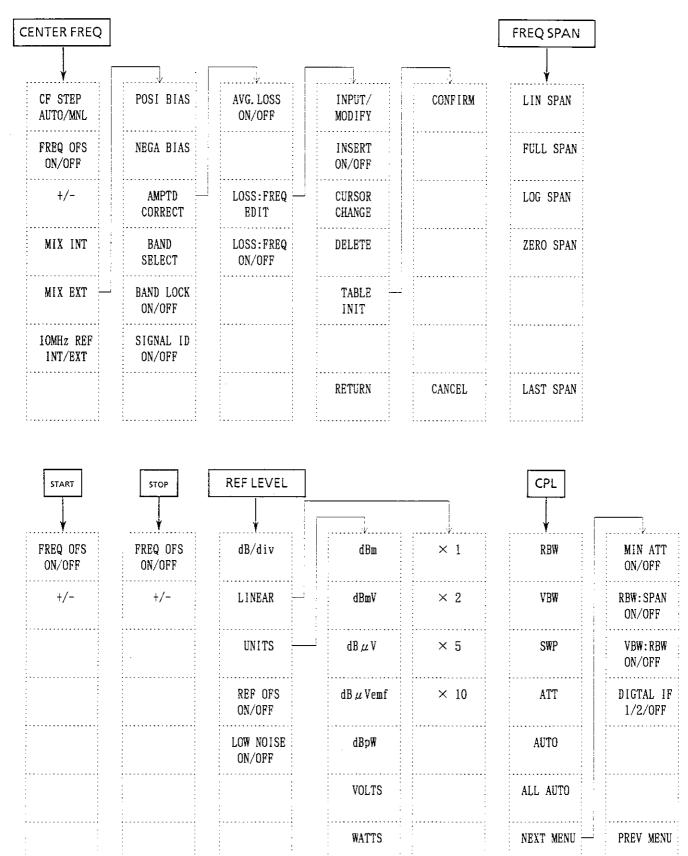
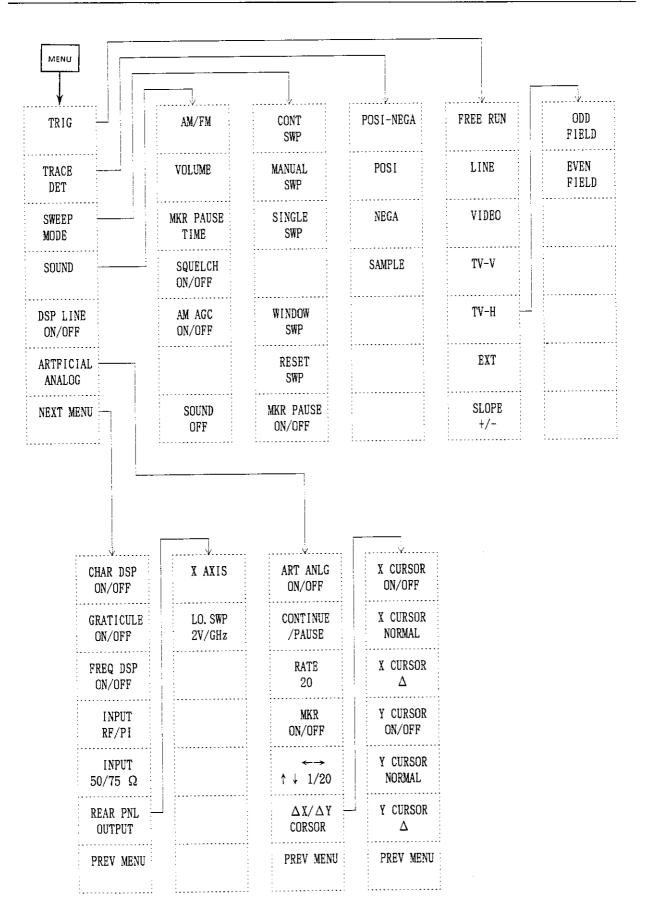
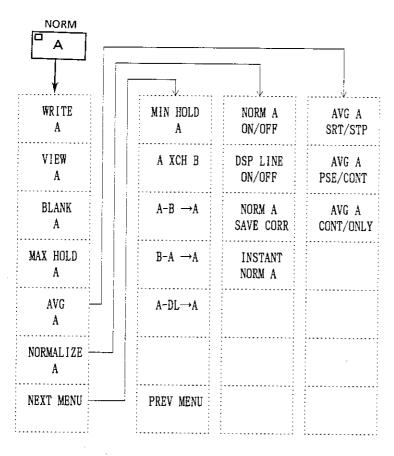


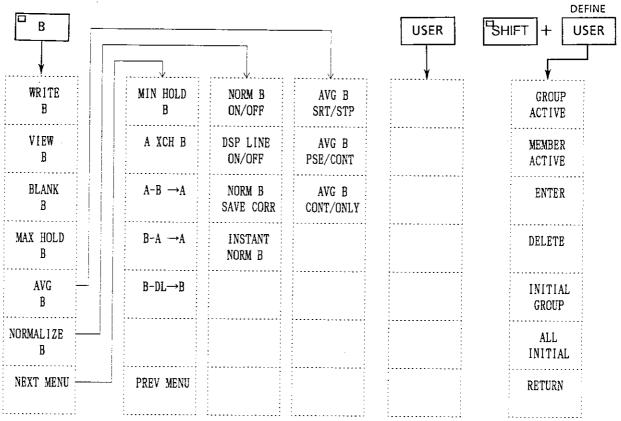
Figure A-8 VSWR

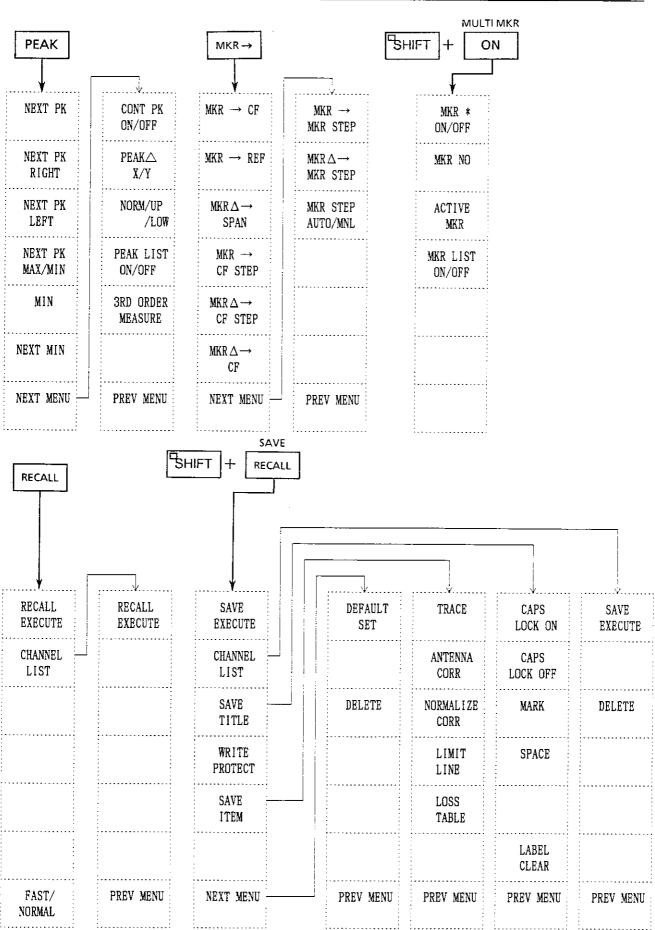
YIG-tuned Oscillator

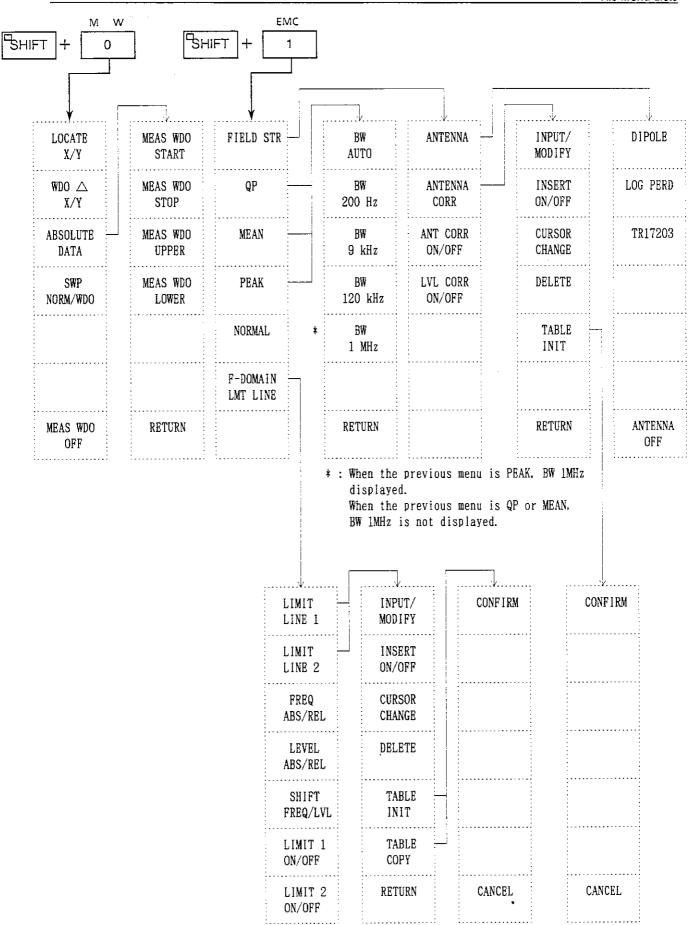
This was first reported by Griffiths in 1946. Garnet ferrites such as YIG (Yttrium-iron garnet) monocrystal show extremely sharp electron spin resonance in the microwave area, and has a resonance frequency in proportion to the direct-current magnetic field applied over a wide frequency range. Therefore, YIG crystals can be used for wide-range electronic tunig, changing the current exciting the elector magnet that generates direct current magnetic field. YIG crystals are used in the local sweep generator of the spectrum analyzer and in other devices such as auto microwave frequency counters.

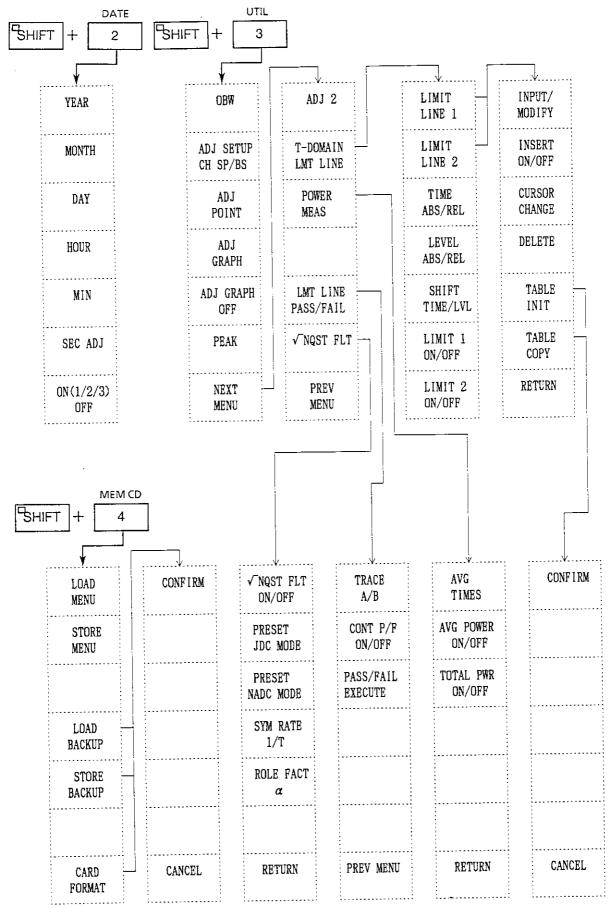
A. 2 Level Scalings

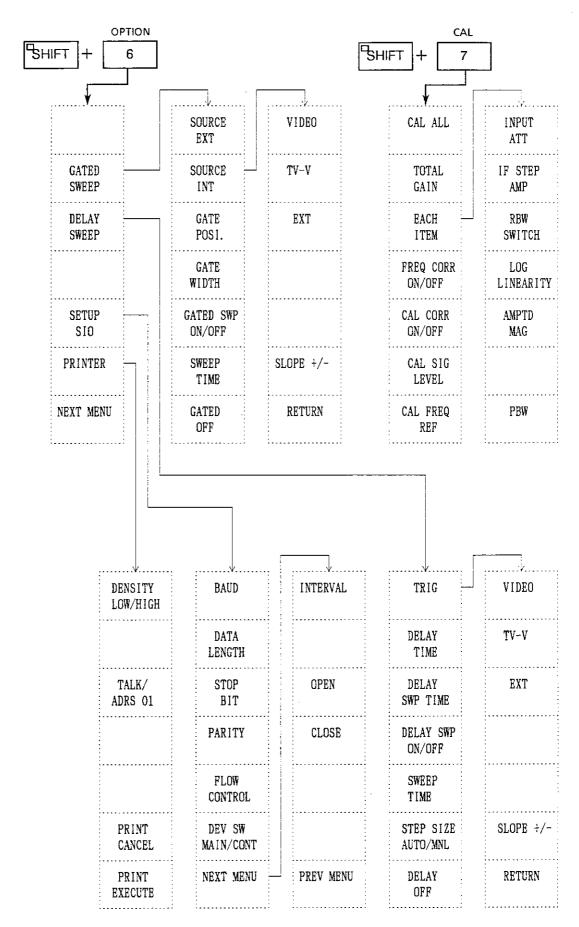





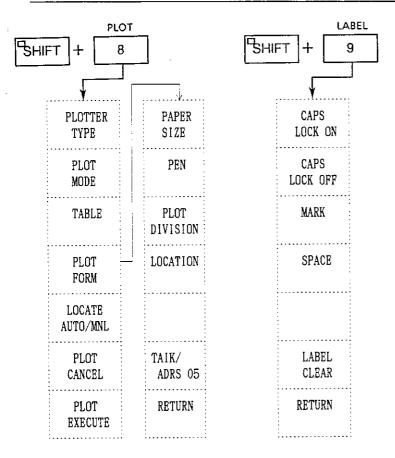

Figure A-9 Level Scalings

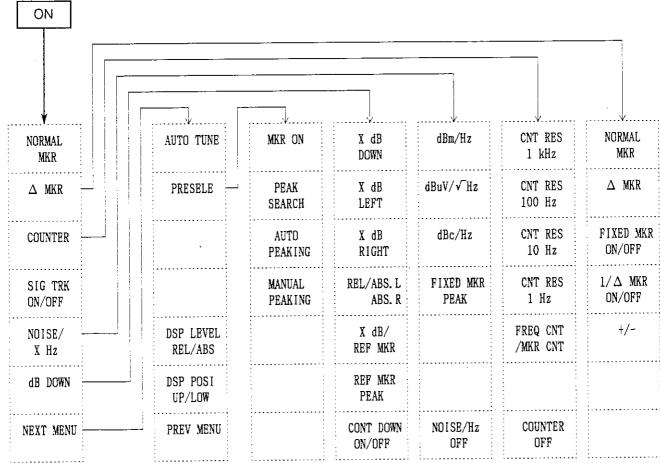

A.3 Menu Lists

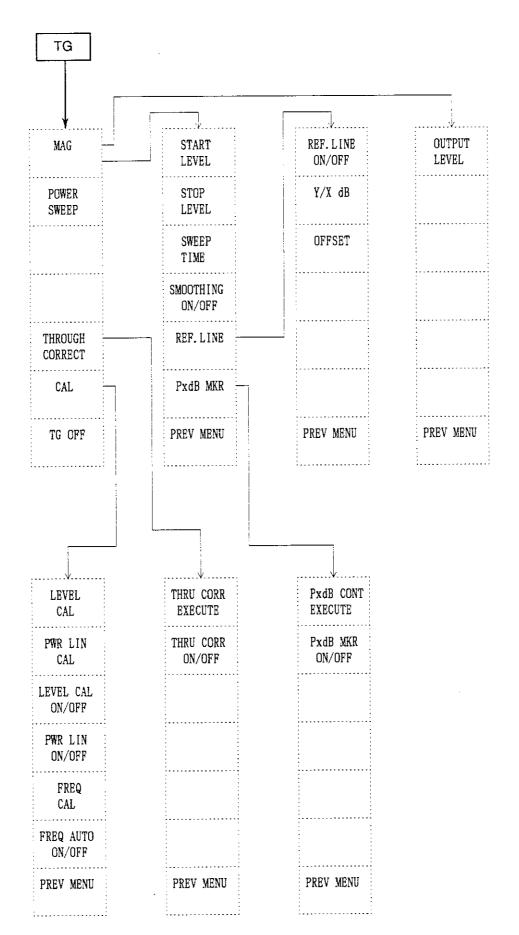












A.4 List of Messages

This appendex lists and explain the messages that may appear on the analyzers screen.

Message	Description		
"A/D calibration failure"	A/D calibration failed.		
"All copied" (NOTE message) All items have been copied.			
"All deleted" (NOTE message)	All items have been erased.		
"Antenna correction mode is OFF"	The antenna correction mode is off.		
"Calibration error of AMPTD MAG"	An error was detected in the AMPTD MAG.		
"Calibration error of IF STEP AMP"	An error was detected in the IF STEP AMP.		
"Calibration error of INPUT ATT"	An error was detected in the INPUT ATT.		
"Calibration error of LOG LINEARITY"	An error was detected in the LOG LINEARITY.		
"Calibration error of RBW SWITCH"	An error was detected in the RBW SWITCH.		
"Calibration error of TOTAL GAIN" An error was detected in the TO GAIN.			
"Calibration signal not detected"	The calibration signal could not be detected.		
"Cannot save in this memory area"	The analyzer cannot save in this memory area because the area is write-protected.		
"Cannot select Trace B while Limit Line On"	The B trace cannot be selected because limit line 1 or 2 is on.		
"Caution!! Freq. & Plug-in corr. data abnormal"	The correction data has been destroyed.		
"Completed" (NOTE message)	The default value setting for IP is completed.		
"Conversion loss mode is OFF"	The conversion loss mode is off.		
"Do you really want to initialize Memory Card?" (REQUEST message)	The system makes sure you really want to initialize the memory card.		
"Do you really want to load Backup data?" (REQUEST message)	The system makes sure you really want to load the backup data.		

Message	Description		
"Do you really want to store backup memory?" (REQUEST message)	The system makes sure you really want to load the backup data to the card.		
"File Access completed" (NOTE message)	File access is completed.		
"Freq. domain data exists, do you really want to delete it?" (REQUEST message)	The system makes sure you really want to delete the frequency domain.		
"Limit line vol. 1 is OFF"	Limit line 1 is off.		
"Limit line vol. 2 is OFF"	Limit line 2 is off.		
"Marker is inactive!"	No marker is active.		
"Memory Card Access failed due to incorrect in parameters. Access failed due to incorrect in parameters.			
"Memory Card Access error (RAM check)"	Access failed due to memory card RAM error.		
"Memory Card Access failed (Antenna data)"	The antenna data cannot be accessed.		
"Memory Card Access failed (Limit 1 data)"	The limit line 1 data cannot be accessed.		
"Memory Card Access failed (Limit 2 data)"	The limit line 2 data cannot be accessed.		
"Memory Card Access failed (Loss data)"	The conversion loss data cannot be accessed.		
"Memory Card Access failed (Menu data)"	The menu data cannot be accessed.		
"Memory Card Access failed (Norm. A data)"	The Normalize A data cannot be accessed.		
"Memory Card Access failed (Norm. B data)"	The Normalize B data cannot be accessed.		
"Memory card Access failed (Setting Data)"	The setting data cannot be accessed.		
"Memory Card Access failed (Soft Protect)"	Access failed due to soft protect (file attribute, etc.).		
"Memory Card Access failed (Sum data)"	The check sum data cannot be accessed.		
"Memory Card Access failed (Trance A data)"	The A trace data cannot be accessed.		

Message	Description		
"Memory Card Access failed (Trace B data)"	The B trace data cannot be accessed.		
"Memory Card Card access error (FAT)"	Access failed due to a file area table error.		
"Memory Card Card access error (UAT)"	Access failed due to a user area table error.		
"Memory Card Data entry overflow"	The saved data exceeds the memory card's capacity.		
"Memory Card Deleted" (NOTE message)	The memory card has been cleard.		
"Memory Card Deletion error (Parameter)"	The memory card cannot be cleared due to a parameter error.		
"Memory Card File Access completed" (NOTE message)	The soft menu or the BACKUP MEMORY data has been stored or loaded.		
"Memory Card File not found"	The file specified could not be found.		
"Memory Card File type unmatched"	The file type did not match.		
"Memory Card Init. error (Card size)"	Initialization failed due to incorrect memory card size.		
"Memory Card Init. error (Parameter)"	Initialization failed due to incorrect internal parameters.		
"Memory Card Initialization failed due to faulty m lnit. error (RAM check)" card RAM.			
"Memory Card Init. error (System Protect)"	The system card cannot be initialized.		
"Memory card Initialized" (NOTE message)	Initialization is complete.		
"Memory Card Memory Card full"	The memory card is full.		
"Memory card Not enough memory, 64KB is required"	The memory card capacity is insufficient to back-up the storage.		
"Memory Card Not Initialized"	The memory card has not been initialized.		
"Memory Card Password unmatched"	The password was incorrect.		

Message	Description		
"Memory Card Product code unmatched"	The product code of the memory is unmatched.		
"Memory Card Write failed (Write Protect)"	Write failed due to write protect.		
"Memory protected"	The protected file cannot be accessed.		
"Memory table full"	The memory table is full.		
"Multi marker list or next peak list is ON"	Label cannot be desplayed because the multi marker list or next peak list is displayed.		
"No multi marker list or no next peak list"	No multi marker list or no next peak list is displayed.		
"No peak point"	No peak point can be retrieved.		
"Not available in QP, MEAN or PEAK mode"	This function is not available in QP, MEAN, or PEAK mode.		
"Not available in A avg or A min mode"	This function is not available in MIN HOLD A or AVG A mode.		
"Not available in A max or A avg mode"	This function is not available in MAX HOLD A or AVG A mode.		
"Not available in A max or A min mode" This function is not available in M HOLD A or MIN HOLD A mode.			
"Not available in B avg or B min mode"	This function is not available in MIN HOLD B or AVG B mode.		
"Not available in B max or B avg mode"	This function is not available in MAX HOLD B or AVG B mode.		
"Not available in B max or B min mode"	This function is not available in MAX HOLD B or MIN HOLD B mode.		
"Not available in Blank Trace"	This function is not available when trace mode is set to BLANK.		
"Not available in Cont. dB Down mode"	This function is not available when Continuous dB Down mode is ON.		
"Not available in Counter mode"	This function is not available when Counter mode is ON.		
"Not available in Diagital IF mode"	This function is not available when the display is set to FFT mode.		
"Not available in Ext. Mixer mode"	This function is not available in Ext. Mixer mode.		
"Not available in High Speed A/D"	This function is not available in HIGH SPEED A/D mode.		

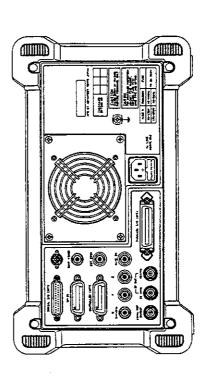
Message	Description		
"Not available in Linear scale"	This function is not abailable in linear scale display mode.		
"Not available in Log Span mode"	This function is not available LOG SPAN mode.		
"Not available in Manual Sweep mode" This function is not available in MA SWEEP mode.			
"Not available in Noise/Hz mode"	This function is not available in Noise/Hz mode.		
"Not available in QP mode"	This function is not available in QP mode.		
"Not available in QP or MEAN mode"	This function is not available in QP or MEAN mode.		
"Not available in Signal Indent mode" This function is not available in SINDENT mode.			
"Not available in Zero Span mode"	This function is not available in ZERO SPAN mode.		
"Not available on baseband frequency"	This function is not available whil the marker is on the base band.		
"Not available while Signal Tracking"	This function is not available during SIGNAL TRACK execution.		
"Not available Antenna correction is ON"	This function is not available in ANTENNA CORR mode.		
"Plotter is busy or inactive"	The plotter is busy or inactive.		
"RAM broken (Backup Memory)"	The backup memory RAM has been destroyed.		
"RAM broken (Memory Card)"	The memory card RAM has been destroyed.		
"Set up data is insufficient Please enter ADJ set up"	No ADJ SET UP data is set, or is set incorrectly.		
"System busy" (NOTE message)	Another process is being executed. The analyzer is busy.		
"Time domain data exists, do you really want to delete it?" (REQUEST message)	The system makes sure you really want to delete the time domain data.		
"VCO calibration failure"	VCO calibration failed.		

R3265 / 3271 SPECTRUM ANALYZER INSTRUCTION MANUAL

A.4 List of Messages

Message Description		
"Vertical scale factor not correct Select 10 dB/div scale"	The reference scale must be set to 10dB/div for this function to execute.	
"10MHz reference fixed" The reference data is fixed. (NOTE message)		
"Not available in magnitude mode" This function is not available in MAGNITUDE mode.		
"Not available in power sweep mode"	This function is not available in POWER SWEEP mode.	
"TG output signal not detected"	TG output signal was not detected.	
"No correction data Please execute "CAL ALL", again"	Correction data is not given. Execute "CAL ALL" again.	
"Correction data is invalid Please "PWR LIN CAL", again"	Correction data is invalid. Execute "PWR LIN CAL" again.	
"Correction data is invalid Please "LEVEL CAL", again"	Correction data is invalid. Execute "LEVEL CAL" again.	
"Calibration error of PWR LIN CAL"	Error was occurred in PWR LIN CAL.	
"Calibration error of LEVEL CAL"	Error was occurred in LEVEL CAL.	
"Calibration error of FREQ CAL"	Error was occurred in FREQ CAL.	

MEMO Ø


20

450±2

600±3

Unit; mm

PART2

R3265/3271 . PERFORMANCE TEST

. ADJUSTMENT

PREFACE

The part 2. appends 4 chapter and 5 chapter of the R3265/3271 maintenance manual for the calibration and the adjustment.

When you maintenance, refer to the R3265/3271 maintenance manual.

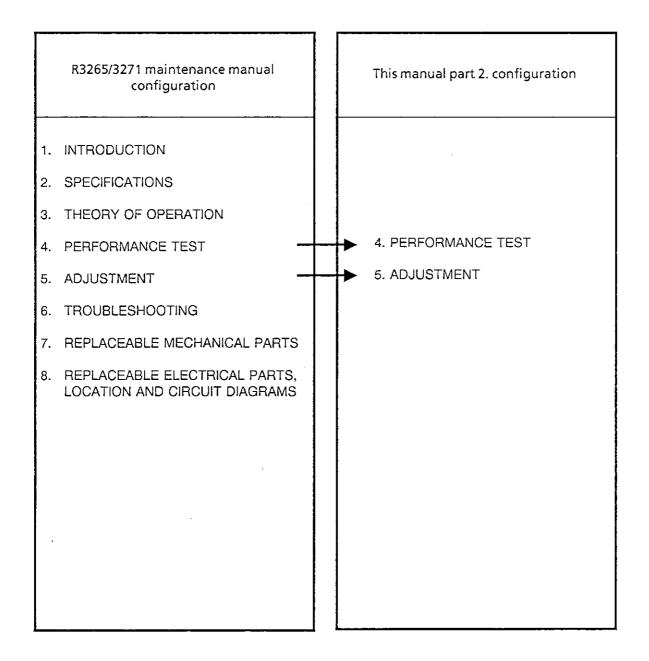


Table of Contents

TABLE OF CONTENTS

4. PERFORMANCE TEST (CALIBRATION)	4-1
4.1 Introductory Description and UUT Performance Requirements 4.2 Measurement Standards and Support Test Equipment Performance Requirement	4-1 4-7
4.3 Preliminary Operations	4-7 4-10
4.4 Performance Test Process	4-10 4-11
4.4.1 Accuracy of Frequency Readout and Frequency Counter Marker	4-11
4.4.2 Frequency Reference Output Accuracy	4-14
4.4.3 Residual FM	4-16
4.4.4 Frequency Drift	4-19
4.4.5 Noise Sidebands	4-22
4.4.6 Frequency Span Accuracy	4-24
4.4.7 Resolution Bandwidth Accuracy and Selectivity	4-29
4.4.8 Resolution Bandwidth Switching Uncertainty	4-33
4.4.9 Displayed Average Noise Level	4-36
4.4.10 Gain Compression	4-43
4.4.11 Residual Response	4-48
4.4.12 Second Harmonic Distortion	4-51
4.4.13 Third Order Intermodulation Distortion	4-55
4.4.14 Image, Multiple and Out-of-Band Response	4-59
4.4.15 Frequency Response	4-66
4.4.16 IF Gain Uncertainty	4-78
4.4.17 Scale Fidelity	4-83
4.4.18 Input Attenuator Accuracy	4-90
4.4.19 Sweep Time Accuracy	4-94
4.4.20 Calibration Amplitude Accuracy	4-97
4.5 Checklist/Data Form	4-98
5. ADJUSTMENT	5-1
5.1 Measurement Standards and Support Test Equipment Performance	
Requirements	5-1
5.2 Preliminary Operations	5-4
5.3 Adjustment	5-5
5.3.1 A/D Adjustment	5-5
5.3.2 Log Amp Adjustment	5-11
5.3.3 Interface Filter Adjustment	5-19
5.3.4 IF Step Amp Adjustment	5-25
5.3.5 28.6 MHz Rejection Circuit Adjustment	5-28
5.3.6 YTO Adjustment	5-30
5.3.7 YTF Adjustment	5-32

Table	of Contents
5.3.8 Frequency Response Adjustment	5-37
5.3.9 Calibrator Amplitude Adjustment	5-45
5.3.10 10MHz Frequency Reference Adjustment	5-47
5.3.11 Frequency Span Adjustment	5-50
5.3.12 Sample Synthesizer Adjustment	5-54

List of Illustrations

LIST OF ILLUSTRATIONS

No.	Title	<u>Page</u>
4-1	Frequency Readout and Frequency Counter Marker Accuracy Test Setup	4-11
4-2	Frequency Reference Accuracy Test Setup	4-14
4-3	Residual FM Test Setup	4-16
4-4	Frequency Drift Test Setup	4-19
4-5	Noise Sidebands Test Setup	4-22
4-6	Frequency Span Accuracy Test Setup	4-24
4-7	Resclution Bandwidth Accuracy/Selectivity Setup	4-29
4-8	Resolution BW Switching Uncertainty Test Setup	4-33
4-9	Displayed Average Noise Test Setup	4-37
4-10	Gain Compression Test Setup	4-43
4-11	Second Harmonic Distortion Test Setup	4-51
4-12	Third Order Intermodulation (<300 MHz) Test Setup	4-55
4-13	Image, Multiple and Out-of-Band Response Test Setup	4-59
4-14	Frequency Response Test Setup	4-67
4-15	IF Gain Uncertainty Test Setup	4-78
4-16	Scale Fidelity Test Setup	4-83
4-17	Input Attenuator Switching Accuracy Test Setup	4-90
4-18	Sweep Time Accuracy Test Setup	4-94
4-19	Calibration Amplitude Accuracy Test SetupDAC	4-97
5-1	Setup for Reference Voltage Adjustment	5-5
5-2	Adjustment Setup	5-6
5-3	Setup for Slope Detector Adjustment	5-9
5-4	21.4 MHz B.P.F. Adjustment Setup	5-11
5-5	Adjustment Setup	5-14
5-6	LC Filter Adjustment Setup	5-19
5-7	Resonator Filter Adjustment Setup	5-21
5-8	IF Step Amp Adjustment	5-25
5-9	28.6 MHz Rejection Circuit Adjustment	5-28
5-10	YTO Adjustment Setup	5-30
5-11	YTF Adjustment Setup	5-32
5-12	Frequency Response Adjustment Setup	5-37
5-13	Calibrator Amplitude Adjustment Setup	5-45
5-14	10 MHz Frequency Reference Adjustment Setup	5-47
5-15	10 MHz Reference Cristal Oscillator Adjustment	5-49
5-16	SPAN Adjustment Setup	5-50
5-17	Sampler Synthe Adjustment	5-54
5-18	Frequency Response Adjustment (2) Setup	5-56

F-1* Jan 25/92

List of Tables

LIST OF TABLES

<u>No.</u>	Title	<u>Pa</u>
3.4-1	RBW Step Table	3.
3.4-2	Relationship between the REF LEVEL and Steep AMP	3
3.7-1	Span-Synthesizer Correspondence	3. 3.
3.7-2	Typical Frequency Values of Synthesizer	3.
5-1	Measurement Standards (MS) Performance Requirements	Ę
5-2	Support Measuring & Test Equipment (M&TE) Performance Requirements	į
5-3	Span Adjustment	5-
5-4	LOG SPAN Adjustment	5-
4-1	UUT Performance Requirements (1 of 5)	2
4-2	Measurement Standards (MS) Performance Requirements	4
4-3	Support Measuring & Test Equipment (M&TE) Performance Requirements	2
4-4	Frequency Readout Accuracy	4-
1- 5	Frequency Counter Marker Accuracy	4-
1-6	Noise Sidebands	4-
- 7	Frequency Span Accuracy	4-
l-8	LOG Span Accuracy	4-
l - 9	Resolution Bandwidth Accuracy	4-
l-10	Resolution Bandwidth Selectivity	4-
l-11	Resolution BW Switching Uncertainty	4-:
-12	Displayed Average Noise Level (R3265)	4-4
-13	Displayed Average Noise Level (R3271)	4-4
-14	Gain Compression	4-4
-15	Third Order Intermodulation Distortion	4-5
-16	Image, Multiple and Out-of-Band Responses (R3271)	4-6
-17	Image, Multiple and Out-of-Band Responses (R3265)	4-6
-18	Frequency Response (R3265/3271: 100 Hz to 3.6 GHz Band)	4-7
-19	Frequency Response (R3265/3271 : 3.6 GHz to 7.5 GHz Band)	4-7
-20	Frequency Response (R3265 : 7.5 GHz to 8 GHz Band) (R3271 : 7.5 GHz to 15.4 GHz Band)	lz 4-7
-21	Frequency Response (R3271: 15.4 GHz to 23.3 GHz Band)	4-7 4-7
-22	Frequency Response (R3271 : 23.3 GHz to 26.5 GHz Band)	4- <i>7</i> 4-7
-23	IF Gain Error (RBW = 1 MHZ, 1 dB/div.)	4-7 4-8
-24	IF Gain Error (RBW = 3 kHZ, 1 dB/div.)	4-8 4-8
-25	IF Gain Error (RBW = 300 kHZ, 0.5 dB/div.)	4-8 4-8

4.1 Introductory Description and UUT Performance Requirements

4. PERFORMANCE TEST (CALIBRATION)

4.1 Introductory Description and UUT Performance Requirements

This procedure describes the performance test of the spectrum analyzer R3265/3271.

The unit being test will be referred to herein as the UUT (Unit-Under-Test).

UUT Environmental range

: TEMP. 20°C to 30°C RH 85% or less

UUT Warm-up/Stabilization period requirements : 60 minutes

Table 4-1 UUT Performance Requirements (1 of 5)

Р	Unit-Under-Test (UUT) arameter/Function	Performance Specifications	Test Method
1.	Frequency Readout Accuracy and Frequency Countor Marker Accuracy.	Frequency Readout Accuracy: < ± [Counter Frequency × Frequency Reference Accuracy) + (Span × Span Accuracy) + (0.15 × RES.BW) + 10 Hz] Span Accuracy: Span > 2 MHz ± 3% Span≤ 2 MHz ± 5% Marker Frequency Counter Accuracy: < ± [(Marker Frequency × Frequency Reference Accuracy) + (5 Hz × N) + 1LSD]	Signals are input from the SG where high- precision frequency standard is set as the reference frequency for measurement.
2.	Frequency Reference Output Accuracy.	Frequency: <1×10 ⁻⁷ /year <2×10 ⁻⁸ /day	The frequency of CAL OUT signal locked to the internal 10 MHz reference is measured with the counter.
3.	Residual FM	Residual FM: <3 Hz×Np-p/0.1 sec	Highly stabilized signals are input for measurement.
4.	Frequency Drift	Frequency Drift: 2.5 kHz×Sweep Time (min.)×N (50 kHz <span≦2 (min.)×n="" (span≦50="" 60="" hz×sweep="" khz)<="" mhz)="" td="" time=""><td>Highly stabilized signals are input for measurement.</td></span≦2>	Highly stabilized signals are input for measurement.
5.	Noise Sidebands	f≤2.6 GHz: 1 kHz offset < -100 dBc/Hz 10 kHz offset < -110 dBc/Hz 20 kHz offset < -110 dBc/Hz 100 kHz offset < -114 dBc/Hz f>2.6 GHz: 1 kHz offset < (-95 + 20 logN) dBc/Hz 10 kHz offset < (-108 + 20 logN) dBc/Hz 20 kHz offset < (-108 + 20 logN) dBc/Hz 100 kHz offset < (-110 + 20 logN) dBc/Hz	Good noise sideband signals are input for measurement.
6.	Frequency Span Accuracy	Linear Span: < ± 3% (Span > 2 MHz) < < ± 5% (Span ≤ 2 MHz) Log Span: ± (10 + Stop Frequency × 0.1%)	Signals at two frequencies according to each span are input to measure the difference between the frequencies.

Table 4-1 UUT Performance Requirements (2 of 5)

F	Unit-Under-Test (UUT) Parameter/Function	Performance Specifications	Test Method
7.	Resolution Bandwidth Accuracy and Selectivity	Range Accuracy: 10 Hz to 3 MHz 1, 3, 10 sequence ± 15% 100 Hz to 1 MHz ± 25% 30 Hz (25°C±10°C), 3 MHz ± 50% 10 Hz to 100 Hz nominal (digital IF) Selectivity (-60 dB/-3 dB): <15:1 100 Hz to 3 MHz <20:1 30 Hz 5:1 10 Hz to 100 Hz nominal (digital IF) Bandwidth (-6 dB): 200 Hz, 9 kHz, 120 kHz Conformed to CISPR standard	CAL OUT signals are input for measurement.
8.	Resolution Bandwidth Switching Uncertainty	100 Hz to 3 MHz RBW: < ± 0.3 dB (Reference to 300 kHz RBW) 30 Hz RBW : < ± 1 dB (digital IF) 10 Hz to 100 Hz : < ± 1.5 dB	CAL OUT signals are input for measurement.
9.	Displayed Average Noise Level	(10 Hz res BW, 0 dB input atten, 1 Hz video filter) R3265: - 100 dBm	No signal is input and average noise level at each frequency is measured.

Table 4-1 UUT Performance Requirements (3 of 5)

Unit-Under-Test (UUT) Parameter/Function	Р	Test Method				
10. Gain Compression (1 dB)	R3265: —5 dBm mi —10 dBm m R3271: —5 dBm mi	Two signals are input simultaneously to measure the level at which one of the signals is lowered by 1 dB.				
11. Residual Response	(no signal at in R3265: < 100 dB	3m	0 dB RF Attenuation 1 MHz 300 kHz	n)	No signal is input and the test is terminated at 50 Ω .	
	R3271:					
	< - 100 dE	< - 100 dBm 1 MHz to 3.6 GHz < - 90 dBm 300 kHz to 26.5 GHz		GHz		
·	< -90 dB			.5 GHz		
12. Second Harmonic Distortion	R3265:	The lowpass filter is				
Distortion			freq range	mixer level	connected to the SG output for	
	< - 70 dBc	100 MHz to 3.6 GHz		-30 dBm	measurement.	
	< 60 dBc	10	MHz to 3.6 GHz	-30 dBm		
	< 100 dBc		>3.5 GHz	- 10 dBm		
	R3271:					
			freq range	mixer level		
	< -70 dBc	10) MHz to 3.6 GHz	-30 dBm		
	<-100 dBc		>3.5 GHz	- 10 dBm		

Table 4-1 UUT Performance Requirements (4 of 5)

Unit-Under-Test (UUT) Parameter/Function	Pi	Test Method				
13. Third Order Intermodulation Distortion	R3265:	Two neighboring signals are input				
		freq range	mixer level	simultaneously for		
	< -70 dBc	200 MHz to 3.6 GHz	-30 dBm	measurement.		
	< -60 dBc	10 MHz to 3.6 GHz	-30 dBm			
	< - 75 dBc	>3.5 GHz	-30 dBm			
	R3271:	R3271:				
		freq range	mixer level			
	< - 70 dBc	10 MHz to 3.6 GHz	-30 dBm			
	< -75 dBc	>3.6 GHz	-30 dBm			
14. Image, Multiple, Out of Band Response	R3265: <-70 dBc (10 MHz to 8 GHz) R3271: <-70 dBc (10 MHz to 18 GHz) <-60 dBc (10 MHz to 23 GHz) <-50 dBc (10 MHz to 26.5 GHz)			Signals allowing image, multiple and out of band response as against the center frequency are input for measurement.		
15. Frequency Response	10 dB input attenuation R3265: ± 1.5 dB 100 Hz to 3.6 GHz ± 1.0 dB 50 MHz to 2.6 GHz ± 1.5 dB 3.5 GHz to 7.5 GHz ± 1.5 dB 7.4 GHz to 8 GHz Additional Uncertainly Due to Band Switching: ± 0.5 dB Frequency Response Referenced to CAL Signal: ± 5 dB 100 Hz to 8 GHz R3271: ± 1.5 dB 100 Hz to 3.6 GHz ± 1.0 dB 50 MHz to 2.6 GHz ± 1.5 dB 3.5 GHz to 7.5 GHz ± 3.5 dB 7.4 GHz to 15.4 GHz ± 4.0 dB 15.4 GHz to 23.3 GHz ± 4.0 dB 23 GHz to 26.5 GHz Additional Uncertainly Due to Band Switching: ± 0.5 dB Frequency Response Referenced to CAL Signal: ± 5 dB 100 Hz to 26.5 GHz			The signal level of SG at a certain level on the screen is measured at each frequency with the power meter.		

Table 4-1 UUT Performance Requirements (5 of 5)

Unit-Under-Test (UUT) Parameter/Function	Performance Specifications	Test Method
16. IF Gain Uncertainty	(after automatic calibration) ± 0.5 dB 0 dBm to - 50 dBm ± 0.7 dB 0 dBm to - 80 dBm	The REF level is raised while lowering the signal level with the external attenuator to measure the error.
17. Scale Fidelity	Log: ±0.2 dB/1 dB, ±1 dB/10 dB, ±1.5 dB/90 dB Linear: ±5% of reference level QP Mode Log: ±1.0 dB/30 dB, ±2 dB/40 dB, ± 1.0 dB/40 dB (25°C±10°C)	Input signal is lowered with the external attenuator for measurement.
18. Input Attenuator Accuracy	(20 dB to 70 dB settings referenced to 10 dB) R3265: ± 1.1 dB/10 dB step, 2.0 dB max, 100 Hz to 8 GHz R3271: ± 1.1 dB/10 dB step, 2.0 dB max, 100 Hz to 12.4 GHz ± 1.3 dB/10 dB step, 2.5 dB max, 12.4 GHz to 18 GHz ± 1.8 dB/10 dB step, 3.5 dB max 18 GHz to 26.5 GHz	Signal at a frequency is input and measured with the internal attenuator.
19. Sweep Time Accuracy	Accuracy: < ±3%	Square wave signals at a known frequency are input repeatedly according to each sweep time for sweep time measurement.
20. Calibration Amplitude Accuracy	Amplitude: -10 dBm ± 0.3 dB	CAL OUT signals are measured with the power meter.

4.2 Measurement Standards and Support Test Equipment Performance Requirement

4.2 Measurement Standards and Support Test Equipment Performance

Requirement

Minimum-Use-Specifications (MUS) are the calculated minimum performance specifications criteria needed for the Measurement Standards (MS) and support M&TE to be used for the comparison measurements required in the Test Procedure (TP) process.

The MUS is developed through uncertainty analysis and is calculated through assignment of a defines and documented uncertainty/accuracy ratio or margin between the specified tolerances of the UUT and the capability (uncertainty specification) required of the measurement standards system. MUS is required to assist a measurement specialist in the evaluation of existing or selection of alternate measurement standards equipment.

The uncertainty/accuracy ratio applied in this TP is 10:1 and any exception to that is indicated in Section 4.1.

CAUTION -

The instructions in this TP relate specifically to the equipment and conditions listed in Section 4.2. If other equipment is substituted, the information and instructions must be interpreted and revised accordingly.

MS and SM&TE Environmental Range : Temperature : 18°C to 28°C

Relative Humidity: 30% to 70%

MS and SM&TE Warm-up/Stabilization Period Requirements : 60 minutes

Table 4-2 Measurement Standards (MS) Performance Requirements

Equipment Generic Name (Qty)	Minimum-Use-Specifications	Mfr., Model/Option Applicable
Frequency Standard	Output Frequency : 10 MHz Stability : 5 × 10 ⁻¹⁰ /day Output Impedance : about 50 Ω Output Voltage : 1 Vpp or more	TR3110
Synthesized Sweeper	Frequency Range : 10 MHz to 18 GHz Frequency Accuracy (CW): 3×10 ⁻⁸ /day Power Level Range : -15 dBm to +15 dBm	TR4515
Frequency Counter	Frequency Range : 10 Hz to 120 MHz Gate Time : 10s Number of Digits Displayed : 8 digits Input Voltage Range : 25 mVrms to 500 mVrms	TR5823
Frequency Synthesizer	Frequency Range : 10 MHz to 20 MHz Stability : 5×10 ⁻⁶ /year Power Level Range: -10 dBm to +13 dBm	HP3325
Synthesized Signal Generator	Frequency Range : 10 MHz to 4 GHz Residual SSB Phase Noise: 1 kHz offset < -115 dBc/Hz 10 kHz offset < -125 dBc/Hz 100 kHz offset < -130 dBc/Hz Power Level Range: -20 dBm to +10 dBm	R4262
Power Meter	Accuracy : ±0.02 dB (dB Relative Mode)	HP436A
Power Sensor	Frequency Range : 50 MHz to 26.5 GHz Power Range : 1 µW to 100 mW Maximum SWR : 1.25 (26.5 GHz)	HP 8485A
	Frequency Range : 10 MHz to 18 GHz Power Range : 1 µW to 10 mW	HP8481A
Sweeper	Frequency Range : 10MHz to 26.5 GHz Power Range : -5 dBm to +10 dBm (at 3.6 GHz)	HP8350 + HP83595A
1 dB Step Attenuator	Frequency Range : DC to 18 GHz Attenuation Range : 12 dB	HP8494H
10 dB Step Attenuator	Frequency Range : DC to 18 GHz Attenuation Range : 70 dB	HP8495H
Attenuator Driver		HP11713A

4.2 Measurement Standards and Support Test Equipment Performance Requirement

Table 4-3 Support Measuring & Test Equipment (M&TE) Performance Requirements

Equipment Generic Name (Qty)	Minim	Mfr., Model/Option Applicable	
Adapter	Type N(m) to BNC	(f)	Generic
	Type N(m) to SMA	(f)	Generic
	SMA(m) to SMA(m)	50-673-0000-31 (Sealectro)
	Type N(f) to BNC(r	m)	Generic
50 Ω Termination	SMA		Generic
20dB Fixed, 3dB Fixed Attenuator	Connector	: SMA(m), SMA(f)	Generic
Power Splitter	Frequency Range Insertion Loss	: 10 MHz to 26.5 GHz : 6 dB (nominal)	Model 1579 (Weinschel)
Low-pass Filter	Cutoff Frequency Rejection at 3 GHz Rejection at 3.8 GHz	z : >40 dB	
Power Divider	Frequency Range Isolation	: 10 MHz to 300 MHz : >20 dB	H-8-4 (ANZAC)
	Frequency Range Isolation	: 2 GHz to 4 GHz : >20 dB	4313-2 (NARDA)
Cable	Frequency Range Maximum SWR Length Connector	: DC to 26.5 GHz : <1.45 GHz at 26.5 GHz : about 70 cm : SMA(m) both ends	A01002
	Length Connector	: 150 cm : BNC(m) both ends	MI-09
	Length Connector	: 10 cm : BNC(m) both ends	MC-61

4.3 Preliminary Operations

4.3 Preliminary Operations

	WARNING	} -	 	 	 	
_		. l	 •	 	0.11-	

Always makes sure spectrum analyzer's power supply cord is plugged into a 3-hole grounded outlet or 2-hole outlet with grounded adapter. You can be fatally shocked if you fail to follow this rule.

Do not touch live circuits when calibrating instrument.

- (1) Review this entire procedure before starting calibration procedure.
- (2) Always confirm that the POWER switch is OFF before connecting the power cable to the AC line.

4.4 Performance Test Process

4.4.1 Accuracy of Frequency Readout and Frequency Counter Marker

SPECIFICATION

Frequency Readout Accuracy < ± [(Center Frequency × Frequency Reference Accuracy) + (Span × Span Accuracy) + (0.15 × RES.BW) + 10 Hz]

Span Accuracy:

Span > 2MHz $\pm 3\%$

Span ≤ 2MHz ±5%

Marker Frequency Counter Accuracy $< \pm [(Marker Freq. \times Freq. Reference Accuracy) + (5 Hz <math>\times$ N) + 1 LSD]

RELATED ADJUSTMENT

YTO Adjustment

10 MHz Frequency Reference Adjustment

DESCRIPTION

The accuracy of the R3265/3271 frequency readout and frequency counter marker is tested with an input signal of known frequency.

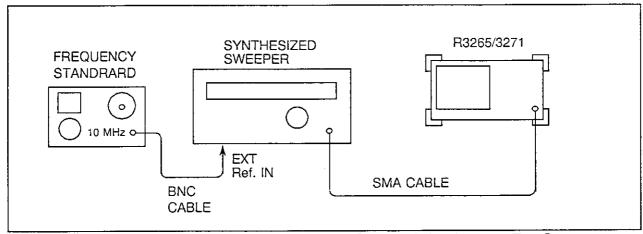


Figure 4-1 Frequency Readout and Frequency Counter Marker Accuracy Test Setup

4-11

EQUIPMENT

Cables:

4.4 Performance Test Process

	•	PROCEDURE
--	---	-----------

PRO	OCEDURE
(1)	Connect the equipment as shown in Figure 4-1
[Fre	quency Readout Accuracy]
(2)	Press the INSTRUMENT PRESET key on the TR4515. Set the TR4515 controls as follows:
	CW 2 GMz Power Level -10 dBm Frequenty Reference EXT (Rear Panel)
(3)	On the R3265/3271, press the PRESET key and set the controls as follows:
	Center Freq 2 GHz Span 1 MHz
(4)	On the R3265/3271, press the PEAK key. Record the MKR frequency on Table 4-4 as the Actual Marker Reading. The reading should be within the limits shown.
(5)	Repeat step (4) for all the frequency and span combinations listed in Table 4-4. Peak the R3265/3271 preselector for and set the Analyzer and the TR4515's CW key to frequencies of 5 GHz and above.
[Fre	quency Counter Marker Accuracy]
(6)	Set the FREQ SPAN key of the R3265/3271 to 1 MHz.
	Press the MARKER ON key to COUNTER and CNT RES 1 Hz
(7)	Key in the TR4515 Cw frequencies and the R3265/R3271 center as indicated in Table 4-5. For each pair of settings, press the PEAK key and record the MKR frequency at each point in Table 4-5. The marker readings should be within the limits shown.

Table 4-4 Frequency Readout Accuracy

TR4515	R3265/3271		R3265/3271 Marker Reading		
Frequency (GHz)	Span	Center Frequency	Min. (GHz)	Actual (GHz)	Max. (GHz)
2	1 MHz	2 GHz	1.999948		2.000051
2	10 MHz	2 GHz	1.99968		2.00031
2	20 MHz	2 GHz	1.99935		2.00064
2	50 MHz	2 GHz	1.99845		2.00154
2	100 MHz	2 GHz	1.9968		2.0031
2	2 GHz	2 GHz	1.939		2.060
5	1 MHz	5 GHz	4.999947		5.000052
5	10 MHz	5 GHz	4.99968		5.00031
5	20 MHz	5 GHz	4.99935		5.00064
5	50 MHz	5 GHz	4.99845		5.00154
5	100 MHz	5 GHz	4.9968		5.0031
5	2 GHz	5 GHz	4.939		5.060
< R3271 ONL	_Y >				
11	1 MHz	11 GHz	10.999947		11.000052
11	10 MHz	11 GHz	10.99968		11.00031
11	20 MHz	11 GHz	10.99935		11.00064
11	50 MHz	11 GHz	10.99845		11.00154
11	100 MHz	11 GHz	10.9968		11.0031
11	2 GHz	11 GHz	10.939		11.060
18	1 MHz	18 GHz	17.999946		18.000053
18	10 MHz	18 GHz	17.99968		18.00031
18	20 MHz	18 GHz	17.99935		18.00064
18	50 MHz	18 GHz	17.99845		18.00154
18	100 MHz	18 GHz	17.9968		18.0031
18	2 GHz	18 GHz	17.939		18.060

Table 4-5 Frequency Counter Marker Accuracy

TR4515 Frequency	R3265/3271 Center	Marker Frequency					
(GHz)	Frequency (GHz)	Min.(GHz)	Actual(GHz)	Max.(GHz)			
2 5	2 5	1.999999794 4.999999494		2.000000206 5.000000506			
<r3271 only=""></r3271>							
11 18	11 18	10.999998889 17.999998184		11.000001111 18.000001816			

4.4.2 Frequency Reference Output Accuracy

SPECIFICATION

Frequency: $<1\times10^{-7}/\text{year}$, $<2\times10^{-8}/\text{day}$

RELATED ADJUSTMENT

Frequency Reference Adjustment

DESCRIPTION

The 10 MHz reference signal is measured for frequency accuracy by measuring the frequency of the 25 MHz CAL OUTPUT signal. The CAL OUTPUT signal is referenced to the 10 MHz reference.

Figure 4-2 Frequency Reference Accuracy Test Setup

EQUIPMENT

Cables:

BNC, 150 cm (2 required) MI-09

4.4 Performance Test Process

• PROCEDUF	RE							
(1) Connec) Connect the equipment as shown in Figure 4-2.							
(2) Set the	e TR5823 controls as follows:							
II.	REQUENCY STD SWITCH (Rear Panel) EXT NPUT CHANNEL							
(3) Press	the PRESET key on the R3265/3271.							
	CAUTION —							
than 30 minutes	this measurement, perform warm-up operation of the R3265/3271 for more s. If the frequency reference of the R3265/3271 is set to EXT, set it to INT or ute warm-up operation after instrument preset.							
(4) Wait fo	or the frequency counter to settle down.							
(5) Read limits:	the frequency counter display. The frequency should be within the following							
	(2)*4.9999975 ≤ ≤ (2)*5.0000025 *: The counter can display only eight digits.							

4-15

4.4.3 Residual FM

SPECIFICATION

Residual FM: < 3 Hz×Np-p/0.1 sec

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

The Residual FM Test measures the short-term stability of the spectrum analyzer's LO system. A stable signal is applied to the input. In zero span, the signal is slope detected on the IF bandwidth filter skirt. Any instability in the LO system transfers to the IF signal in the mixing process. The test determines the slope of the IF filter in Hz/dB and then measures the signal amplitude variation caused by the residual FM. Multiplying these two values gives the residual FM in Hz.

Figure 4-3 Residual FM Test Setup

EQUIPMENT

Frequency Synthesizer HP3325

Cable:

BNC, 150 cm

Jan 30/92

MI-09

•	PF	20	CE	וח	IP.	F
-			\sim		_, _	_

- (1) Connect the equipment as shown in Figure 4-3.
- (2) Set the Frequency Synthesizer controls as follows:

(3) On the R3265/3271, press the PRESET key and set the CENTER FREQ to 10 MHz,

Press the CPL key and NEXT MENU, then press DIGITAL IF twice to set the Digital IF to "OFF".

Press the PEAK key, marker ON key, SIG TRK to set the signal track to "ON".

Press the FREQ SPAN key, then press six times to set the SPAN to 1kHz.

Set the [RBW] to 30 Hz.

Press the MARKER ON key, SIG TRK ON/OFF to set the signal track to "OFF".

Set the REF LEVEL -5 dBm and dB/div to 1 dB, and set FREQ SPAN to 200 Hz.

Press the PEAK key, MKR \rightarrow key, MKR \rightarrow REF and PEAK MKR \rightarrow [MKR \rightarrow REF].

Press the MENU key, SWEEP and SINGLE SWP

Press ON MKR

- (4) Rotate the data entry knob clockwise until MKR reads -3 dB ± 0.1 dB.

 Press [MKR] Rotate the data entry knob clockwise until MKR read -6 dB ± 0.1 dB.
- (5) Divide the ∠ MKR frequency by the ∠ MKR amplitude to obtain the slope of the RBW filter. For example, if the ∠ MKR frequency is 14 Hz and the ∠ MKR amplitude is 6.05 dB, the slope is 2.3 Hz/dB.

Record the result below:

Slope____Hz/dB

4.4 Performance Test Process

[Mea	asuring the Residual FM]
(6)	Press the MARKER OFF key, the MENU key, SWEEP and CONT SWP . Set FREQ SPAN to 0 Hz.
	Set the SWEEP to 100 ms.
(7)	Press the CENTER FREQ key. Rotate the data entry knob clockwise to place the displayed trace about six divisions below the reference level.
	Press the MENU key, SWEEP and SINGLE SWP.
	Press the PEAK key, MARKER ON key MKR and PEAK key MIN .
(8)	Read the \triangle MKR amplitude, take its absolute value, and record the result as the
	deviation.
	Deviation:dB

The residual FM should be less the 3 Hz.

Residual FM: ____Hz

4.4.4 Frequency Drift

SPECIFICATION

Frequency Drift — 2.5 kHz×sweep time (min)×N (50 kHz < span ≤ 2 MHz) 60 Hz×sweep time (min)×N (span ≤ 50 kHz)

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

In the frequency drift test, drift of the spectrum analyzer's LO system is measured when the sweep time is long. Drifts are measured for two spans by inputting highly-stabilized signal.

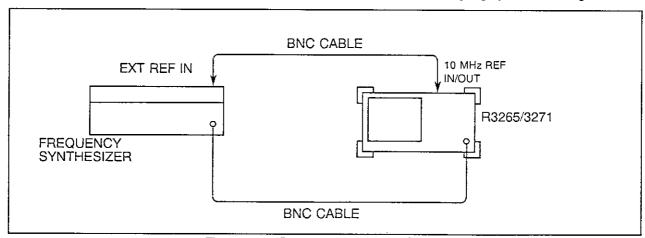


Figure 4-4 Frequency Drift Test Setup

EQUIPMENT

Frequency Synthesizer HP3325

Cable: BNC 150 cm (2 required) MI-09

Adapter: Type (N) to BNC

_		\sim	\sim	$\overline{}$	
•	РH			DI.	JRE

.

(1)	Connect the equipment as shown in Figure 4-4.	•
(2)	On the HP3325, set the controls as follows:	
	FREQ	10 MHz -8 dBm ~ key
(3)	On the R3265/3271, press PRESET and set the contra	rols as follows:
	CENTER FREQ SPAN dB/div SWP	10 MHz 50.1 kHz 2 dB/div 1 sec
(4)	On the R3265/3271, press CENTER FREQ, ↓, ↓ the screen moves to the second division from the rightness or more.	, ↓ and the signal on ght. Wait for sweep to be performed
(5)	On the R3265/3271, press A VIEW and B WRITE B Set the sweep time to 80 sec.	
	Press MENU SWEEP SINGLE RESET WODE SWP SWP Wait for the sweep to be completed (until the sweep	indicator goes off).
(6)	On the R3265/3271, press PEAK, MARKER, ON,	MKR, A and PEAK.
(7)	Read the MKR frequency and record this as the frequency and record the frequency and reco	requency Drift:Hz
(8)	On the R3265/3271, press MENU , [SWEEP] , [CONTINUE MODE] , [SWEEP] , [SWEEP]	and MARKER OFF .
	Press A WRITE , B BLANK and CPL , SWE	OFF".

4.4 Performance Test Process

	Set the R3265/3271 as follows:	
	Center Freq	10 MHz
	Span	200 Hz
	RBW	30 Hz
	SWP	5 sec
(9)	Wait for sweep to be performed three times or more. Repeat (4) through (6).	
(3)	riepeat (4) tillough (0).	
(10)	Read the MKR frequency and record this as the freq	uency drift.
	It should be less than 60 Hz.	
	F	requency Drift:Hz

4.4.5 Noise Sidebands

SPECIFICATION

Noise Sidebands:

Offset	f ≤2.6 GHz	f>2.6 GHz		
1 kHz	< - 100 dBc/Hz	< (-95 + 20 logN) dBc/Hz		
10 kHz	< -110 dBc/Hz	< (-108 + 20 logN) dBc/Hz		
100 kHz	< -114 dBc/Hz	< (-110 + 20 logN) dBc/Hz		

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

The noise sidebands of a 2.6 GHz and 3.7 GHz, -10 dBm, signal are measured at an offset of 1 kHz, 10 kHz and 100 kHz from the carrier.

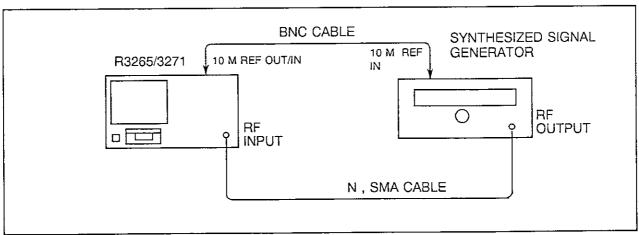


Figure 4-5 Noise Sidebands Test Setup

• EQUIPMENT: Synthesized Signal Generator

Critical Specifications for Equipment Substitution	Recommended model
Frequency Range = 10 MHz to 4 GHz Residual SSB Phase Noise at 1 kHz offset < -115 dBc/Hz 10 kHz offset < -125 dBc/Hz 100 kHz offset < -130 dBc/Hz	R4262

• PROCEDURE

(1) Connect the equipment as shown in Figure 4-5.

(2) Set the Signal Generator controls as follows:

(3) Press the PRESET key on the R3265/3271. Press the CPL key and NEXT MENU then press DIGITAL twice, to set the Digital IF to "OFF".

Set CENTER FREQ to 2.6GHz.

Since the measurement is made for each of 1 kHz, 10 kHz and 100 kHz offset frequency, set the span frequency to 2.5 times each offset frequency, or 2.5 kHz, 25 kHz and 250 kHz. Keep other settings unchanged.

(4) Operate keys on the R3265/3271 as follows to measure noise sidebands of each offset frequency. The measurement procedure for 100 kHz offset frequency is explained here, and the procedure is applicable for 10 kHz and 1 kHz offset frequency.

Set the span corresponding to offset.

Press the PEAK key and the MKR→ key MKR→ REF .

Press the PEAK key and the MARKER ON key Noise and dBc/Hz and Press 1 0 0 kHz to set each offset frequency.

Press the reference level by 20 dB and perform averaging for about 20 samples. After averaging, read the marker level and write it down in Table 4-6.

Also, measure noise sidebands with the center frequency at 3.7 GHz, and Table 4-6 is completed.

Table 4-6 Noise Sidebands

Offset	CF 2.6	6 GHz	CF 3.7 GHz		
(kHz)	Actual (dBc/Hz)	Max. (dBc/Hz)	Actual (dBc/Hz)	Max. (dBc/Hz)	
1		– 100		- 95	
10		-110		– 108	
100		-114		– 110	

·4.4.6 Frequency Span Accuracy

SPECIFICATION

- $< \pm 3\%$ of actual frequency separation (SPAN > 2 MHz)
- < ± 5% of actual frequency separation (SPAN ≤ 2 MHz)
- < ± (10% of actual frequency + 0.1% of Stop frequency): LOG Span Accuracy

RELATED ADJUSTMENT

Span adjustment.

DESCRIPTION

Set the signal frequency twice with the synthesized sweeper and measure the difference between signal frequencies with the analyzer.

Check the span accuracy using the signal frequency difference measured with the ⊿MARKER function.

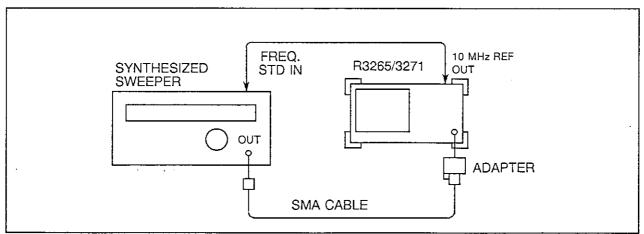


Figure 4-6 Frequency Span Accuracy Test Setup

EQUIPMENT

-		 	
Cables:			
SMA, 70 cm		 	A01002
BNC, 150 cm		 	MI-09

Synthesized Sweeper

TR4515

4.4 Performance Test Process

PRC	DCEDURE
(1)	Connect the equipment as shown in Figure 4-6.
(2)	Set the TR4515 controls as follows:
	CW
(3)	On the R3265/3271, press the PRESET key and set the R3265/3271 controls as follows:
	Center Freq 2 GHz Span 20 kHz
(4)	On the R3265/3271, press the MENU key, SWEEP SINGLE SWP SWP SWP
	the PEAK key and the MARKER ON key, MKR.
(5)	Set the TR4515 controls as follows:
	CW 2.000008 GHz
(6)	On the R3265/3271, press the MENU key, SWEEP, SINGLE SWP, SINGLE SWP, SWP, and
	the PEAK key. Record the ⊿MARKER frequency reading as the Actual ⊿ MARKER Reading in Table 4-7. The reading should be within the limits shown.
(7)	Set the frequency of the TR4515, the center frequency and span of the R3265/3271 as shown in Table 4-7, and repeat steps (5) through (7).
(LO	G Span Accuracy)
(8)	On the R3265/3271, press the PRESET key and the FREQ SPAN key [LOG SPAN]

4.4 Performance Test Process

(9)	Set the R3265/3271 controls as follows:	
	Start frequency	100 MHz
	Stop frequency	1 GHz
(10)	Set the TR4515 controls as follows:	
	cw	200 MHz
(11)	On the R3265/3271, press the MENU key, SWEEP MODE	SINGLE SINGLE and
	the PEAK key.	
	Record the MARKER frequency in Table 4-8 as the A	Actual Marker Reading. The reading
	should be within the limits shown.	
(12)	Set the frequency of the TR4515, the start and sto shown in Table 4-8, and repeat steps (10) through (1	•

4-26

Table 4-7 Frequency Span Accuracy

TR4515	TR4515	R3265	/R3271	⊿ Ma	arker Readi	ng
1st Frequency	2nd Frequency	Center Frequency	Span Setting	Min.	Actual	Max.
1.999992 GHz 1.999980 GHz 1.999840 GHz 1.9992 GHz 1.9992 GHz 1.998 GHz 1.996 GHz 1.992 GHz 1.98 GHz 1.96 GHz 1.96 GHz 1.96 GHz 1.96 GHz	2.000008 GHz 2.000020 GHz 2.000160 GHz 2.0008 GHz 2.0008 GHz 2.002 GHz 2.004 GHz 2.008 GHz 2.02 GHz 2.04 GHz 2.08 GHz 2.08 GHz 2.08 GHz	2 GHz 2 GHz	20 kHz 50 kHz 400 kHz 2 MHz 2.01 MHz 5 MHz 10 MHz 20 MHz 100 MHz 200 MHz 500 MHz	15.2 kHz 38 kHz 304 kHz 1.52 MHz 1.552 MHz 3.88 MHz 7.76 MHz 15.52 MHz 38.8 MHz 77.6 MHz 155.2 MHz 388 MHz		16.8 kHz 42 kHz 336 kHz 1.68 MHz 1.648 MHz 4.12 MHz 8.24 MHz 16.48 MHz 41.2 MHz 82. 4 MHz 164.8 MHz
1.6 GHz 1.2 GHz 2.9 GHz 1.3 GHz	2.4 GHz 2.8 GHz 6.1 GHz 7.7 GHz	2 GHz 2 GHz 4.5 GHz 4.5 GHz	1 GHz 2 GHz 4 GHz 8 GHz	776 MHz 1.552 GHz 3.104 GHz 6.208 GHz		824 MHz 1.648 GHz 3.296 GHz 6.592 GHz
9.996 GHz 9.96 GHz 9.6 GHz 9.6 GHz 16.996 GHz 16.96 GHz 16.6 GHz 16.2 GHz 6 GHz 2 GHz	10.004 GHz 10.04 GHz 10.4 GHz 10.8 GHz 17.004 GHz 17.04 GHz 17.4 GHz 17.8 GHz 12 GHz 14 GHz 18 GHz	10 GHz 10 GHz 10 GHz 10 GHz 17 GHz 17 GHz 17 GHz 10 GHz 10 GHz	10 MHz 100 MHz 1 GHz 2 GHz 10 MHz 100 MHz 1 GHz 2 GHz 5 GHz 10 GHz 19 GHz	7.76 MHz 77.6 MHz 776 MHz 1.552 GHz 7.76 MHz 77.6 MHz 1.552 GHz 3.88 GHz 7.76 GHz 15.52 GHz		8.24 MHz 82.4 MHz 824 MHz 1.648 GHz 8.24 MHz 82.4 MHZ 1.648 GHZ 4.12 GHZ 8.24 GHZ 16.48 GHZ

4-27

Table 4-8 LOG Span Accuracy

TR4515	R3265/R3271		Marker Reading			
Frequency	Start Frequency	Stop Frequency	Min.	Actual	Max.	
200 MHz 500 MHz 800 MHz 20 MHz 50 MHz 80 MHz 100 MHz 200 MHz 500 MHz 10 MHz 20 MHz 50 MHz 100 MHz 20 MHz 20 MHz 400 MHz 400 MHz 400 MHz 400 MHz 400 MHz 400 MHz	100 MHz 100 MHz 100 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 1 MHz 1 MHz 1 MHz 1 MHz 1 MHz 1 MHz	1 GHz 1 GHz	179MHz 449 MHz 719 MHz 17 MHz 44 MHz 71 MHz 89 MHz 179 MHz 449 MHz 719 MHz 8 MHz 17 MHz 4 MHz 17 MHz 44 MHz 71 MHz 49 MHz 41 MHz 41 MHz 89 MHz		221 MHz 551 MHz 881 MHz 23 MHz 56 MHz 89 MHz 111 MHz 221 MHz 551 MHz 881 MHz 12 Mhz 23 MHz 23 MHz 46 MHz 48 MHz 49 MHz 41 MHz 41 MHz 41 MHz 41 MHz 42 MHz	
500 MHz 800 MHz	1 MHz 1 MHz	1 GHz 1 GHz	449 MHz 719 MHz		551 MHz 881 MHz	

4.4.7 Resolution Bandwidth Accuracy and Selectivity

SPECIFICATION

Range:

10 Hz to 3 MHz; 1, 3, 10 Sequence

Accuracy:

±50% (Resolution Bandwidth 10 Hz to 100 Hz, Digital IF)

±15% (Resolution Bandwidth 10 Hz to 1 MHz) ±25% (Resolution Bandwidth 3 MHz, 30 Hz)

Note: 30 Hz at 25°C ± 10°C

Selectivity:

<15:1 (100 Hz to 3 MHz)

<20:1 (30 Hz)

5:1 (10 Hz to 100 Hz, Digital IF) Nominal

Bandwidth (6 dB):

200 Hz, 9 kHz and 120 kHz (based on CISPR specifications)

RELATED ADJUSTMENT

DESCRIPTION

This test measures the resolution bandwidth accuracy and selectivity. The 60 dB bandwidth is then determined and the results used to calculate the selectivity for each bandwidth (Selectivity = 60 dB BW/3 dB BW).

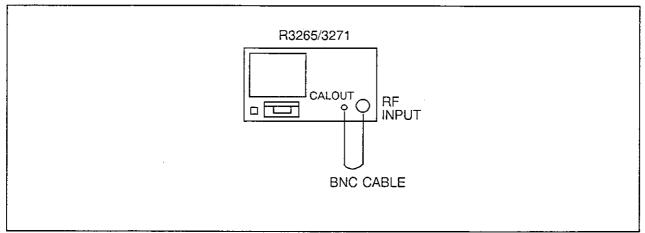
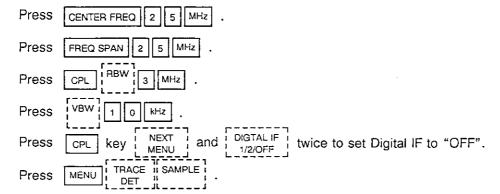


Figure 4-7 Resclution Bandwidth Accuracy/Selectivity Setup

• PROCEDURE

[Resolution Bandwidth Accuracy]


- (1) Connect the R3265/3271 CALOUT to the INPUT 50 Ω as shown in Figure 4-7.
- (2) Press PRESET and set the controls as follows:

```
Press
        CENTER
                  2
                     5
                         MHz
Press
                            MHz
         FREQ SPAN
Press
         PEF LEVEL
                         -dBm
                               and
               RBW
Press
         CPL
                      3
                         MHz
                                   II DIGTAL IF
                          DIGTAL IF
                                                to set Digital IF to "OFF".
Press
         CPL
                 MENU
                           1/2/OFF
                                       1/2/OFF
                 TRACE
                        ii SAMPLE
Press
        MENU
                  DET
```

- (3) Press PEAK, MARKER ON GB DOWN AND AND SET CONT DOWN to ON.
- (4) Press MENU SWEEP SINGLE SINGLE and wait for a new sweep to finish.
- (5) Record the marker frequency in Tables 4-9 and 4-10 as actual 3 dB bandwidth.
- (6) Change the RBW and span frequency as shown in Table 4-9, and repeat steps 4 and 5 for remaining RBWs.

[Resolution Bandwidth Selectivity]

(7) Press PRESET and set the controls as follows:

4.4 Performance Test Process

(8)	Press PE	AK , MARKER ON	dB DOWN , set	x dB DOWN	60 dB and CONT DOWN ON/OFF to ON.
			[

- (9) Press MENU SWEEP I SINGLE SINGLE and wait for a new sweep to finish.
- (10) Record the marker frequency in Table 4-10 as actual 60 dB bandwidth.
- (11) Divide the 60 dB bandwidth by the 3 dB bandwidth and record as the Actual Resolution Bandwidth Selectivity in Table 4-10.
- (12) Change the RBW and span frequency as shown in Table 4-10, and repeat steps (9) through (11) for remaining RBWs.

(For 10 Hz RBW, digital IF, set averaging to ten times because of close noise sidebands involved.

Set VBW to AUTO if RBW is 10kHz or below.

Table 4-9 Resolution Bandwidth Selectivity

Resolution	Frequency	3dB Selectivity				
Bandwith Setting	Span Setting	Min.	Actual	Max.		
3 MHz	5 MHz	2.25 MHz		3.75 MHz		
1 MHz	2 MHz	850 kHz		1.15 MHz		
300 kHz	500 kHz	255 kHz		345 kHz		
100 kHz	200 kHz	85 kHz		115 kHz		
30 kHz	50 kHz	25.5 kHz		34.5 kHz		
10 kHz	20 kHz	8.5 kHz		11.5 kHz		
3 kHz	5 kHz	2.55 kHz		3.45 kHz		
1 kHz	2 kHz	850 Hz		1150 Hz		
300 Hz	500 Hz	255 Hz		345 Hz		
100 Hz	200 Hz	85 Hz		115 Hz		
^(*1) 30 Hz	200 Hz	22.5 Hz		37.5 Hz		
100 Hz, Digital IF	200 Hz	50 Hz		150 Hz		
30 Hz, Digital IF	200 Hz	15 Hz		45 Hz		
10 Hz, Digital IF	200 Hz	5 Hz		15 Hz		

^{*1:} The MIN and MAX values for RBW 30 Hz are those when the temperature is 25°C±10°C. Values for other temperature range are not specified.

Table 4-10 Resolution Bandwidth Selectivity

Resolution	Frequency	60 dB	3 dB	Selec	tivity
Bandwith Setting	Span Setting	Bandwidth	Bandwidth	Actual	Max.
3 MHz	25 MHz				15
1 MHz	20 MHz				15
300 kHz	5 MHz		:		15
100 kHz	1 MHz				15
30 kHz	500 kHz				15
10 kHz	200 kHz				15
3 kHz	50 kHz				15
1 kHz	20 kHz				15
300 Hz	5 kHz				15
100 Hz	2 kHz		=		15
30 Hz	1 kHz				20
100 Hz, Digital IF	1 kHz				5 (nominal)
30 Hz, Digital IF	500 Hz				5 (nominal)
10 Hz, Digital IF	200 Hz				5 (nominal)

4.4.8 Resolution Bandwidth Switching Uncertainty

• SPECIFICATION

100 Hz to 3 MHz RZSBW: $< \pm 0.3$ dB (referred to 300 kHz RES BW)

30 Hz RESBW:

 $< \pm 1 dB$

Digital IF:

10 Hz to 100 Hz

< 1.5 dB

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

This test utilizes the CALOUT signal for measuring the switching uncertainty between resolution bandwidths. At each resolution bandwidth setting, the displayed amplitude variation of the signal in measured. All measurements are referenced to the 300 kHz bandwidth.

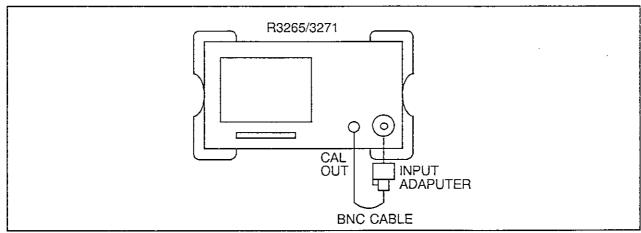


Figure 4-8 Resolution BW Switching Uncertainty Test Setup

EQUIPMENT

Adapters:	
Typed N(m) to BNC (f)	 JCF-AF 001E×3
Cables:	
PNC 10 am	MC 61

4.4 Performance Test Process

R3265/3271 SPECTRUM ANALYZER MAINTENANCE MANUAL

• F	PRO	CED	URE
-----	-----	-----	-----

(1) Connect the R3265/3271 CALOUT to the INPUT 50 Ω as shown in Figure 4-8.

(2) Press the PRESET key, the SHIFT key and the 7 key EACH RBW SWITCH

Wait for the "Calibration in progress" message to disappear then press

the CPL key, NEXT MENU, DIGTAL IF DIGTAL IF to set the Digital IF to "OFF".

Set the instrument controls as follows:

 Center Freq
 25 MHz

 Span
 1 MHz

 Ref Level
 -5 dBm

 RBW
 300 kHz

 Sweep Mode
 SINGLE

 dB/Div
 1 dB

(3) Press the MENU key, SWEEP SINGLE , the PEAK key and the MARKER ON key, MODE SWP , the PEAK key and the MARKER ON key, ON/OFF

- (4) Set the frequency span and RBW to the values listed in the second entry of Table 4-11 (Span 5 MHz, RBW 3 MHz).
- (5) Press the MENU key, SWEEP SINGLE and the PEAK key,

Record the ⊿MARKER amplitude in the Actual ⊿ MARKER Reading column of Table 4-11. The MARKER reading should be within the limit shown.

Press the CPL key NEXT MENU and DIGTAL IF 1/2/OFF set Digital IF to "1" when measuring the resoution BW switching uncertainty of digital IF.

(7) Repeat steps 4 and 5 for each set of frequency span and RBW settings in Table 4-11.

Table 4-11 Resolution BW Switching Uncertainty

RBW	Min. (dB)	Actual	Max. (dB)
300 kHz 3 MHz 1 MHz 100 kHz 30 kHz 10 kHz 3 kHz 1 kHz 300 Hz 30 Hz 000 Hz *30 Hz	0 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -1 -1.5	0 (Ref.)	0 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 1 + 1.5 + 1.5
3	00 kHz 3 MHz 1 MHz 00 kHz 30 kHz 10 kHz 1 kHz 0 kHz 1 kHz 00 Hz 00 Hz 30 Hz	00 kHz 0 0 3 MHz -0.3 1 MHz -0.3 00 kHz -0.3 10 kHz -0.3 10 kHz -0.3 1 kHz -0.3 1 kHz -0.3 00 Hz -0.3 10 Hz -0.3 10 Hz -1.5 100 Hz -1.5 10	00 kHz

*: Digital IF

4.4.9 Displayed Average Noise Level

• SPECIFICATIONS

Displayed Average Noise level:

Resolution bandwidth 10 Hz, input attenuator 0 dB, video bandwidth 1 Hz.

(R3265)

Frequency range	Average Noise Level
1 kHz	– 100 dBm
10 kHz	110 dBm
100 kHz	-111 dBm
1 MHz	- 135 dBm
10 MHz to 3.6 GHz	-{140-1.55×f(GHz)} dBm -{145-1.55×f(GHz)} dBm (Low noise mode)
3.5 GHz to 8 GHz	- 135 dBm

(R3271)

Frequency range	Average Noise Level
1 kHz	– 100 dBm
10 kHz	110 dBm
100 kHz	-111 dBm
1 MHz to 3.6 GHz	-{135-1.55×f(GHz)} dBm
3.5 GHz to 7.5 GHz	- 130 dBm
7.5 GHz to 15.4 GHz	- 123 dBm
15.2 GHz to 23.3 GHz	116 dBm
23 GHz to 26.5 GHz	– 110 dBm

 RELATED ADJUSTMENT Frequency response adjustment.

DESCRIPTION

This test measures the displayed average noise level in all frequency tests. The analyzer's input is terminated at 50 Ω . In Band 1, in the frequence range from 100 Hz to 3.6 GHz, the test first measures the average noise at 1 kHz, 10 kHz, 100 kHz and 1000 kHz, then at any frequency point in zero span. For the rest of Band 1, and for all remaining bands, the test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in zero span. In the case of the R3265 only, a LOW NOISE function is provided, so the test measures the average noise level at 25 MHz when the LOW NOISE function is set to ON.

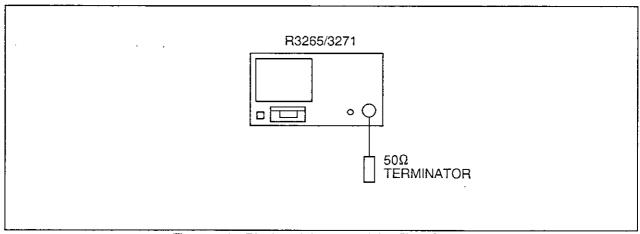


Figure 4-9 Displayed Average Noise Test Setup

EQUIPMENT
 50 Ω Terminator

4.4 Performance Test Process

• PROCEDURE

[Displayed Average Noise, Band 1]

(1) Connect the eqiptment as shown in Figure 4-9.

Press PRESET and set the controls as follows:

Center Frequency	1 kHz
Span Frequency	0 Hz
Reference Level	-60 dBm
Resolution Bandwidth	30 Hz
Digital IF	OFF
Video Bandwidth	1 Hz
Input Attenuator	0dB

- (2) Press A AVG 1 0 Hz and wait for averaging to finish and press PEAK
- (3) Read the marker level and record it in Table 4-12 as the Displayed Noise Level at 1kHz.
- (4) Press PRESET and set the controls as follows:

Center Frequency	10 kHz
Span Frequency	0 Hz
Reference Level	-60 dBm
Input Attenuator	0 dB
Resolution Bandwidth	300 Hz
Video Bandwidth	1 Hz
Sweep Time	500 msec

(5) Press MENU SWEEP SINGLE and wait for a new sweep to finish,

then press PEAK .

4.4 Performance Test Process

- (6) Read the marker level and record it in Table 4-12 as the Displayed Noise Level at 10 kHz.
- (7) Change the center frequency to each of the values listed in column 1 of Table 4-12 and repeat step 5 sequentially. Read the marker level and record it in Table 4-12 as the Displayed Noise level at Center Frequency.
- (8) Press PRESET and set the controls as follows:

Start Frequency	3.501 GHz
Stop Frequency	8 GHz (7.5 GHz for R3271)
Reference Level	-40 dBm
Resolution Bandwidth	3 MHz
Video Bandwidth	100 kHz
Input Attenuator	0 dB

- (9) Press A AVG 1 0 Hz and wait for averaging to finish.
- (10) Press PEAK, MKR \rightarrow MKR \rightarrow CF and A WRITE A
- (11) Set the controls as follows:

Span Frequency	0 Hz
Reference Level	-60 dBm
Resolution Bandwidth	300 Hz
Video Bandwidth	1 Hz
Sweep Time	500 msec

- (12) Press MENU SWEEP SINGLE SINGLE and PEAK .
- (13) Read the marker level and record it in Table 4-12 as the Displayed Average Noise Level from 3.5 GHz to 8 GHz (7.5 GHz for R3271).

4.4 Performance Test Process

(This page has been intentionally left blank.)

4.4 Performance Test Process

[Displayed Average Noise Level, Band 2 (R3271 only)]

(14) Press PRESET and set the controls as follows:

Start Frequency	7.501 GHz
Stop Frequency	15.4 GHz
Reference Level	-40 dBm
Resolution Bandwidth	3 MHz
Video Bandwidth	100 kHz
Input Attenuator	0 dB

- (15) Repeat steps (9) through (12).
- (16) Read the marker level and record it in Table 4-12 as the Displayed Noise level from 7.5 GHz to 15.4 GHz.

[Displayed Average Noise, Band 3 (R3271 only)]

(17) Press PRESET and set the controls as follows:

Start Frequency	15.201 GHz
Stop Frequency	23.3 GHz
Reference Level	-40 dBm
Resolution Bandwidth	3 MHz
Video Bandwidth	100 kHz
Input Attenuator	0 dB

- (18) Repeat steps (9) through (12).
- (19) Read the marker level and record it in Table 4-12 as the Displayed Average Noise Level from 15.2 GHz to 23.3 GHz.

4-39

[Displayed Average Noise, Band 4 (R3271 only)]

(20) Press PRESET and set the controls as follows:

Start Frequency		. 23.001 GHz
Stop Frequency		. 26.5 GHz
Reference Level		. —40 dBm
Resolution Bandwi	dth	. 3 MHz
Video Bandwidth		. 100 kHz
Input Attenuator		. 0 dB

- (21) Repeat steps (9) through (12).
- (22) Read the marker level and record it in Table 4-12 as the Displayed Average Noise Level from 23 GHz to 26.5 GHz.

[Displayed Average Noise at 25 MHz when setting the LOW NOISE function On. (R3265 only)]

(23) Press PRESET and set the R3265 controls as follows:

- (24) Press A A 5 0 Hz and wait for averaging to finish.
- (25) Press PEAK and read the marker level and record it as Maximum Low Noise.

Press PEAK and read the marker level and record it as Minimum Low Noise.

(26) Displayed Average Noise in LOW NOISE mode is provided:

Record the result as the LOW NOISE in Table 4-12.

Table 4-12 Displayed Average Noise Level (R3265)

Frequency	Displayed Average Noise Level (dBm)	Specification (dBm)
1 kHz		- 95.23
10 kHz		-95.23
100 kHz		- 96.23
1.1 MHz		- 120.23
10.1 MHz	,	- 125.21
101 MHz		125.07
501 MHz		-124.45
1001 MHz		– 123.68
1.5 GHz		-122.90
2.0 GHz		-122.13
2.5 GHz		– 121.35
3.0 GHz	٠.	-120.58
3.5 GHz		119.80
3.5 GHz to 8 GHz		- 120.23
24 MHz (LOW NOISE)		– 145.0

Table 4-13 Displayed Average Noise Level (R3271)

Frequency	Displayed Average Noise Level (dBm)	Specification (dBm)
1 kHz		- 95.23
10 kHz		-95.23
100 kHz		-96.23
1.1 MHz		- 120.23
10.1 MHz		- 120.21
101 MHz		-120.07
501 MHz		-119.45
1001 MHz		-118.68
1.5 GHz		-117.90
2.0 GHz		-117.13
2.5 GHz		- 116.35
3.0 GHz	* .	 115.58
3.5 GHz		-114.80
3.5 GHz to 7.5 GHz		 115.23
7.5 GHz to 15.4 GHz		- 108.23
15.2 GHz to 23.3 GHz		-101.23
23 GHz to 26.5 GHz		-95.23

4.4.10 Gain Compression

SPECIFICATION

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

This test means gain compression in the low and high bands.

Two signals, separated by 1 MHz, are used. First a -30 dBm signal is placed at the input of the R3265/3271.

After that, input a signal at -5 dBm or above and increase its signal level. The initial signal level at -30 dBm is lowered. Measure the input level when the signal is lowered by 1 dB.

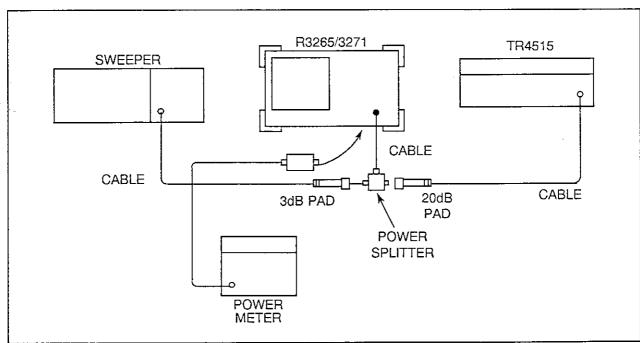


Figure 4-10 Gain Compression Test Setup

4.4 Performance Test Process

EQUIPMENT

	Synthesized Sweeper Sweeper Power Meter Power Sensor Power Splitter 20 dB Pad 3 dB Pad Cable: SMA (3 required)	TR4515 HP8350 + HP83595A HP436A HP848/A Model 1579 DEE-000480-1 DEF-000685-1
PR	OCEDURE	
(1)	Zero and calibrate the power meter.	
(2)	Connect the equipment as shown in Figure 4-10.	
(3)	Press the INSTR PRESET by on both the TR4515 Set the controls for the HP8350 as follows:	and the sweeper.
	CW CW Filter Power Level	ON
(4)	Set the controls for the TR4515 as follows:	
	CW Power Level	
(5)	On the R3265/3271, press the PRESET key. Set the R3265/3271 controls as follows:	
	Center Freq	20 MHz 0 dB

4.4 Performance Test Process

(6)	On the HP8350, press the vernier key. Turn the vernier knob of the HP8350 so that the displayed signal on the R3265/3271 screen enters the range within ± 2 div. from the center on the horizontal axis. On the R3265/3271, press $$\operatorname{SPAN}$$ and $$\downarrow$$. Turn the vernier knob of the HP8350 so that the displayed signal on the R3265/3271 screen enters the range within ± 1 div. from the center on the horizontal axis. On the R3265/3271, press $$\operatorname{SPAN}$$ and $$\downarrow$$. Turn the vernier knob of the HP8350 so that the displayed signal on the R3265/3271 screen enters the range within ± 1 div. from the center on the horizontal axis. On the R3265/3271, press $$\operatorname{SPAN}$$ and $$\downarrow$$. Turn the vernier knob of the HP8350 so that the displayed signal on the R3265/3271 screen enters the range of 2.5 div. \pm 0.5 div. on the right side of the center on the horizontal axis. Now, the frequency of the HP8350 output signal is set to 11 MHz \pm 0.1 MHz.
(7)	On the R3265/3271, set the $\boxed{\text{PEF LEVEL}}$ to -30 dBm.
(8)	On the HP8350, press the RF key to set the output to OFF.
(9)	Adjust the power level of the TR4515 for a displayed signal level of $-30~\mathrm{dBm}\pm0.1~\mathrm{dB}$ on the R3265/3271 screen.
(10)	On the HP8350, press the RF key to set the output to ON.
(11)	Turn the power level knob on the HP8350 until the signal level at 2.5 div. in the lefthand part on the R3265/3271 screen is lowered by 1 dB from -30 dBm. If the power level knob cannot be turned any more, stop it there.
(12)	Remove the SMA cable from the input terminal of the R3265/3271 and connect the power sensor there.
(13)	Record the amplitude reading on the power meter. It should be greater than -5 dBm (R3265: -10 dBm)
Or.	dBm
Step	s 14 through 18 are not necessary for the R3271.
(14)	Set the HP8350 controls as follows:
	CW 200 MHz

4.4 Performance Test Process

(15)	Set the TR4515 controls as follows:	
	CW	200 MHz
(16)	Set the R3265 controls as follows:	
	Center Freq	20 MHz
(17)	Repeat steps (6) through (12).	
(18)	Record the amplitude reading on the power meter. It should be greater than -5 dBm.	
The	following steps are to be performed for both the R326	5 and R3271.
(19)	Rotate the CAL FACTOR switch to the power sensor	s 3.6 GHz calibration factor.
(20)	Set the HP8350 controls as follows:	
	CW Power Level	
(21)	Set the TR4515 controls as follows:	
	CW	3.6 GHz
(22)	Set the R3265/3271 controls as follows:	
	Center Freq	3.6005 GHz 20 MHz 10 dBm 10 dB
(23)	On the R3265/3271, press MARKER ON NEXT MENU	PRESELE PEAK AUTO SEARCH PEAKING
	Wait for the "peaking!!" message to disappear. Set the dB/div to 1dB/div.	

 $(x_1,\dots,x_n) \in \mathbb{R}^n$

4.4 Performance Test F	rocess?
------------------------	---------

- (24) Repeat steps (6) through (12).
- (25) Record the amplitude reading on the power meter. It should be greater than -5 dBm.

____ dBm

Table 4-14 Gain Compression

R3265/71 Center Freq (MHz)	TR4515 CW (MHz)	HP8350 CW (MHz)	1dB Gain Compression level (dBm)
10.5	10	11	
200.5	200	201	
3600.5	3600	3601	

4.4 Performance Test Process

4.4.11 Residual Response

SPECIFICATION

RELATED ADJUSTMENT

There is no related adjustment for this performance test.

DESCRIPTION

This test checks for residual responses. Any response located above the display line is measured in a narrow frequency span and resolution bandwidth. The RF INPUT is terminated in 50 Ω .

EQUIPMENT

Coaxial 50 Ω Termination

Adapters:

Type N to SMA HRM-554s Type N to BNC

Cable:

BNC, 150cm MI-09

PROCEDURE

(1) On the R3265/3271, press the PRESET | key and set the controls as follows;

Center Freq	25 MHz
Span	10 kHz
Ref Level	– 10 dBm
RES BW	300 Hz
ATT	0 dB

4.4 Performance Test Process

(2) Connect a BNC cable between the CAL OUTPUT and the RF INPUT and press the FEAK Key.

Check that the marker amplitude is within -10.0 dBm ±0.2 dB. If it is out of the range,

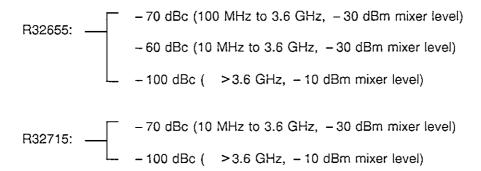
- $-10.0 \text{ dBm } \pm 0.2 \text{ dB}.$
- < < Residual Responses, base band > >
- (3) Remove the BNC cable and adapter from the RF INPUT.

Install the Type N to SMA adapter and 50 Ω termination on the RF INPUT. Press the PRESET key and set the controls as follows:

Center Freq	1.3 MHz
Span	2 MHz
CF Step	1.9 MHz
Ref Level	– 50 dBm
ATT	0 dB
RES BW	10 kHz
Video BW	300Hz

The noise level should be at least 3 dB below the display line. If it is not, it will be necessary to reduce the Span and RES BW to reduce the noise level.

If the Span is reduced, reduce the CF Step to no more than 95 % of the Span.


(5) If a residual is suspected, press [SINGLE] again. A residual response will persist, but a noise peak will not. Record the frequency and amplitude of any responses above the display line.

(6)	If a response is marginal, verify the response amplitude as follows:
	① Press the SHIFT and RECALL key, I , Hz key, SAVE EXECUTE.
	Press the MENU key, SWEEP, CONT SWP.
	S Place the marker on the peak of the response in question.
	Press the MKR→ key, MKR→CF .
	⑤ Press the CPL key, [RBW], [AUTO].
	© Continue to reduce the Span until a RES BW of 300 Hz is reached.
	Press PEAK MKR→CF set peak to center.
	The Record the frequency and amplitude of any residual response above the display line.
	Press the RECALL key, RECALL EXECUTE .
(7)	Check for residuals up to 3.599 GHz using the procedure of step (4) through (6) above.
	To change the center frequency, then press the CENTER FREQ and keys.
	< < Residual Response, 3.5 to 7.5 GHz Band > >
(8)	Set the R3265/3271 as follows:
	Center Freq 3.625 GHz Span 50 MHz CF Step 47.5 MHz RES BW 300 kHz Video BW 300 Hz Press the MENU key, ON/OFF 9 0 -dBm key.
(9)	Check for residuals up to center frequency 7.425GHz using the procedure of steps (4)
, ,	through (6) above. To change the center frequency, then press the CENTER FREQ and keys.
	Lastly check for residuals at center frequency 7.475GHz using the procedure of steps (4)
	through (6) above.

· · · · · · · · · · · · · · · ·

4.4.12 Second Harmonic Distortion

• SPECIFICATION

RELATED ADJUSTMENT

There is no related adjustment procedure for the performance test.

DESCRIPTION

A synthesized sweeper and low-pass filter provide the signal for measuring second harmonic distortion. The low-pass filter eliminates any harmonic distortion originating at the signal source. The R3265/3271 frequency response is calibrated. The synthesized sweeper is phase-locked to the spectrum analyzer's 10 MHz reference.

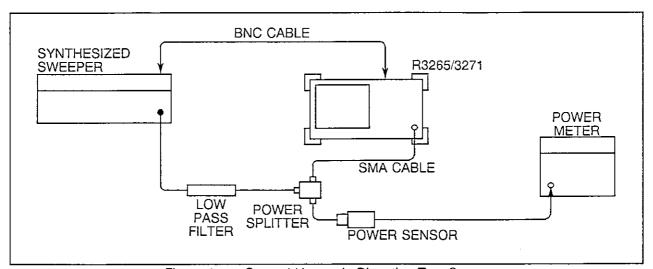


Figure 4-11 Second Harmonic Distortion Test Setup

4.4 Performance Test Process

EQUIPMENT	
Synthesized Sweeper TR4515 Power Meter HP436A Power Sensor HP8485A or HP8481A Power Splitter Model 1579 2 GHz Low-pass Filter DEE-001172-1 Adapter: Type N to SMA HRM-554S Cables: BNC, 150 cm MI-09 SMA, 70 cm A01002	
PROCEDURE	
[100 Hz to 3.6 GHz Band]	
(1) Zero and calibrate the power meter. Rotate the CAL FACTOR switch to the power sensor's 1.5 GHz calibration factor.	•
(2) Connect the equipment as shown in Figure 4-11.	
(3) Press the INSTR PRESET key on the TR4515. Set the TR4515 controls as follows:	
CW	
(4) On the R3265/3271, press PRESET and set the controls as follows:	
Center Freq 1.5 GHz Span 10 kHz VBW 30 Hz ATT 20 dB Ref Level - 10 dBm	
(5) Set the TR4515 POWER LEVEL key for a -10 dBm ± 0.1 dB reading on the power meter.	
(6) On the R3265/3271, press MENU SWEEP SINGLE , PEAK , MARKER ON MKR	

FIXED MKR ON/OFF

4.4 Performance Test Process

(7)	On the R3265/3271, press CENTER FREQ 3 GHz , MENU SWEEP SINGLE SWP . Wait for completion of the sweep. Press PEAK and record the amplitude of MKR . It should be less than -70 dBc. Second Harmonic Distortion (<3.6 GHz) dBc
[>3	.6 GHz Band]
(8)	Remove the low-pass-filter and connect an SMA cable between the TR4515 and the R3265/3271.
(9)	On the R3265/3271, press PRESET and set the controls as follows:
	Center Freq 3.8 GHz Span 500 kHz
(10)	Set the TR4515 controls as follows:
	CW 3.8 GHz Power Level - 10 dBm
(11)	On the R3265/3271, press MAKER ON NEXT MENU PRESELE PEAK AUTO SEARCH PEAKING. Wait for the "peaking" message to disappear.
(12)	Set the TR4515 controls as follows:
	CW 1.9 GHz Power Level 0 dBm
(13)	Connect the equipment as shown in Figure 4-11.
(14)	Rotate the CAL FACTOR switch to the power sensor's 1.9 GHz calibration factor.
(15)	Set the TR4515 POWER LEVEL key for a 0 dBm ± 0.1 dB reading on the power meter.

4-53 Oct 28/91

4.4 Performance Test Process

(16)	Set the R3265/3271 center frequency to 1.9 GHz and span to 1 kHz. Press PEAK MAKER ON MKR FIXED MKR ON/OFF .	
	Set the center frequency to 3.8 GHz and ref-level to -40 dBm. Press $\begin{bmatrix} AVG \\ A \end{bmatrix}$ $\begin{bmatrix} AVG \\ A \end{bmatrix}$ $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} Hz \\ 1 \end{bmatrix}$.	
	Wait for the end of 20 averagings.	
	Press PEAK and record the △ MKR amplitude.	
	It should be less than - 100 dBc	
	Second Harmonic Distortion (>3.6 GHz)	dBc

4.4.13 Third Order Intermodulation Distortion

SPECIFICATION

For a total mixer input level* of -30 dBm:

R3265	R3271
10 MHz to 3.6 GHz : < - 60 dBc	10 MHz to 3.6 GHz: - 70 dBc
200 MHz to 3.6 GHz : < - 70 dBc	
3.5 GHz to 8 GHz : < - 75 dBc	3.5 GHz to 26.5 GHz : < - 75 dBc

^{*} Total mixer input level = Total Input Level - Input Attenuation

Converted Specification for a total mixer input level* of -20dBm:

R3265	R3271
10 MHz to 3.6 GHz : < -40 dBc	10 MHz to 3.6 GHz : < - 50 dBc
200 MHz to 3.6 GHz : < -50 dBc	
3.5 GHz to 8 GHz : < - 55 dBc	3.5 GHz to 26.5 GHz : < - 55 dBc

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

Two synthesized sweepers provide the signals required for measuring third order intermodulation.

It is difficult when the input level is low because of being buried to the noise, to measure the spectrum generated by the distortion. Third order intermodulation distortion is raised by 20dB if the input level is raised by 10dB.

Then, examine with mixer input level set in -20dBm after the spec is converted into a value which is 20dB larger.

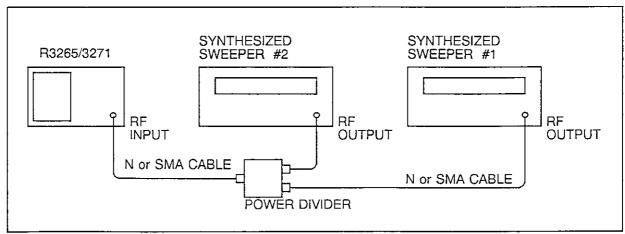


Figure 4-12 Third Order Intermodulation (<300 MHz) Test Setup

4.4 Performance Test Process

EQUIPMENT

Instrument	Critical Specifications for Equipment Substitutuion		Recommended Model
Synthesized Sweeper	Frequency Range: Power Level:		TR4515 R4262
Power Divider #1	, ,	10 MHz to 300 MHz > 20 dB	H-8-4 (ANZAC)
Power Divider #2	Frequency Range:	1 GHz to 4 GHz	4313-2 (NARDA)

PROCEDURE

The following procedure carryout at -20dBm for a total mixer input level.

[Third Order Intermodulation (<300 MHz)]

- (1) Select power divider #1 and connect the units as shown in Figure 4-12.
- (2) Press the NSTR PRESET key on each synthesized sweeper. Set each of the synthesized sweeper controls as follows:

Power Level	 10 dBm
CW (synthesized sweeper #1)	10.5 MHz (205 MHz)
CW (synthesized sweeper #2)	10.6 MHz (205.1 MHz)
RF Out	OFF

(3) On the R3265/3271, press the PRESET key. Set the R3265/3271 controls as follows:

Center Freq	10.5 MHz (205 Mhz)
Ref Levei	– 10 dBm
Freq Span	1 MHz
RBW	3 kHz
VBW	300 Hz
ATT	10 dB

- (4) On the synthesized sweeper #1, set the RFOUT key to ON.
- (5) On the R3265/3271, press the PEAK key, NEXT MENU and CONT PK ON/OFF

4.4 Performance Test Proces	4.4	Perf	ormance	Test I	Proces:
-----------------------------	-----	------	---------	--------	---------

(6)	On the synthesized sweeper #1, adjust the $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
(7)	On the synthesized sweeper #1, set the RFOUT key to OFF. On the synthesized sweeper #2, set the RFOUT key to ON.
(8)	On the synthesized sweeper #2, adjust the POWER LEVEL key for a -10 dBm ± 0.1 dB reading on the R3265/3271 display.
(9)	On the synthesized sweeper #1, set the RFOUT key to ON.
(10)	On the R3265/3271, press the following keys: CONTPK and the PEAK key.
	Wait for a new sweep to finish, then press the following keys: the A key,
	VIEW , the PEAK key, ON key and MKR.
(11)	Third order intermodulation distortions appear symmetrically 100 kHz apart from the two carriers. Move⊿ MKR to each distorted position with the knob or ↑ key, read the level in dBc and record the greater reading.
(12)	For the R3271, only measurement with 10.5 MHz center frequency is made. For the R3265, repeat the steps for measurement with 205 MHz center frequency and record its result.
[Thi	rd Order Intermodulation, 3.6 GHz]
(13)	Switch power divider #1 to #2.
(14)	Press the NSTR PRESET key on each synthesized sweeper. Set each of the synthesized sweeper controls as follows:
	Power Level - 10 dBm CW (synthesized sweeper #1) 3.6 GHz CW (synthesized sweeper #2) 3600.1 GHz RF Out OFF

4.4 Performance Test Process

(15) On the R3265/3271, press the PRESET key. Set the R3265/3271 controls as follows:

Center Freq	3.6 GHz
Ref Level	– 10 dBm
Span	1 MHz
(RBW)	3 kHz
(ATT)	10 dB
(VBW)	100 HZ

.(16) Repeat steps (4) to (11) to measure the third order intermodulation distortions and record the greater reading.

Table 4-15 Third Order Intermodulation Distortion

(R3265)

Sythsized Sweeper #1	Sythsized Sweeper #2	Third Order Interme	odulation Distortion
[CW] (MHz) [CW] (GHz)		Actual (dBc)	Max (dBc)
10.5	10.6		-40
205	205.1		-50
3600	3600.1		-55

(R3271)

Sythsized Sweeper #1	Sythsized Sweeper #2	Third Order Interme	odulation Distortion
[CW] (MHz)	[CW] (GHz)	Actual (dBc)	Max (dBc)
10.5	10.6		-50
3600	3600.1		-55

4.4.14 Image, Multiple and Out-of-Band Response

SPECIFICATION

Image, Multiple and Out-of-Band Response:

RELATED ADJUSTMENT

YTF adjustment

DESCRIPTION

The performance tests in the R3265 and R3271 differ in measurement frequency. Make measurement with each band.

Figure 4-13 Image, Multiple and Out-of-Band Response Test Setup

4.4 Performance Test Process

•	EQL	IIPMENT
	Pow Pow Adag Cabl	Type N to SMA
	;	SMA, 70 cm A01002
•	PRO	CEDURE
	[100	Hz to 3.6 GHz Band (R3265/3271)]
	(1)	Connect the equipment as shown in Figure 4-13, but do not connect the power sensor.
	(2)	Press the INSTR PRESET key on the sweeper and set the controls as follows:
		CW 2 GHz Power Level 0 dBm
	(3)	On the R3265/3271, press the PRESET key and set the controls as follows:
		Center Freq 2 GHz Span 40 kHz RBW 100 kHz VBW 300 Hz
	(4)	Zero and calibrate the power meter. Rotate the CAL FACTOR switch to the power sensor's 2 GHz calibration factor. Connect the power sensor to the power splitter.
		Connect the power sensor to the power spinter.
	(5)	Adjust the sweeper POWER LEVEL key for a 0 dBm ± 0.1 dB reading on the power meter.
	(6)	On the R3265/3271, press PEAK , MKR , MKR , SPAN 5 MHz MENU SWEEP SINGLE , PEAK MARKER ON MKR FIXED MKR SPAN 4 0 MHz .

(7)	For each of the frequencies listed in Table 4-16 (R3271) for the 100 Hz to 3.6 GHz band, do the following:		
	1	Set the sweeper to the listed CW key frequency.	
	2	On the power meter, rotate the CAL FACTOR switch to the appropriate power sensor calibration factor.	
	3	Set the sweeper POWER LEVEL key for a 0 dBm reading on the power meter.	
	4	Press MENU SWEEP SINGLE on the R3265/3271.	
	\$	On the R3265/3271, press $\boxed{\text{PEAK}}$ and record the \angle 1MKR amplitude in Table 4-16	
		(R3271) as the response amplitude. The response amplitude should be less than	
		the specification listed in the table.	
(8)	On	the R3265/3271, press the MARKER OFF , MENU SWEEP CONT SWP .	
	Mea	asurement frequency for the R3265 is different for the following bands. Therefore,	
	skip	steps (9) to (27) and restart from step (28). The following steps are for the R3271.	
[3.5	to 7.	5 GHz Band (R3271 Only)]	
(9)	Set	the R3271 center frequency to 5.5 GHz. Set the sweeper cw to 5.5 GHz.	
(10)		ate the CAL FACTOR switch to the power sensor's 5.5 GHz calibration factor on the ver meter.	
(11)	On	the sweeper, set the power level to the power meter indicate 0dBm.	
	On	the R3271, press PEAK MKR→ MKR→CF , SPAN 5 MHz , MARKER ON	
	NEX	T MENU PRESELE PEAK AUTO Wait for the "peaking!!" message to	

(12) Repeat steps (7) and (8) for the sweeper frequencies listed in Table 4-16 for the 3.5 GHz to 7.5 GHz band.

PEAK MARKER

disappear.

Press MENU

MHz .

SWEEP SINGLE MODE SWP

SPAN

MKR | FIXED MKR | ON/OFF

4.4 Performance Test Process

[7.4	GHz to 15.4 GHz Band (R3271 oNLY)]
(13)	Set the R3271 center frequency to 12 GHz. Set the sweeper cw to 12 GHz.
(14)	Rotate the CAL FACTOR switch to the power sensor's 12 GHz calibration factor on the power meter.
(15)	Repeat step (11) for the R3271.
(16)	Repeat steps (7) and (8) for the sweeper frequencies listed in Table 4-16 for the 7.4 GHz to 15.4 GHz band.
[15.2	2 GHz to 23.3 GHz Band (R3271 Only)]
(17)	Set the R3271 CENTER FREQ to 21 GHz. Set the sweeper CW to 21 GHz.
(18)	Rotate the CAL FACTOR switch to the power sensor's 21 GHz calibration factor on the power meter.
(19)	Repeat step (11) for the R3271.
(20)	Repeat steps (7) and (8) for the sweeper frequencies listed in Table 4-16 for the 15.2 to 23.3 GHz band.
[23 t	o 26.5 GHz Band (R3271 Only)]
(21)	Set the R3271 center frequency to 24.4 GHz. Set the sweeper w to 24.4 GHz.
(22)	Rotate the CAL FACTOR switch to the power sensor's 24.4 GHz calibration factor on the power meter.
(23)	Repeat step (11) for the R3271.
(24)	Repeat steps (7) and (8) for the sweeper frequencies listed in Table 4-16 for the 23 to 26.5 GHz band.
(25)	Record the maximum response amplitude from Table 4-16. (At frequency less than 18 GHz)
	Maximum Response Amplitude (<18 GHz)dBc

4-62 Oct 28/91

4.4 Performance Test Process

(26)	Record the maximum response amplitude from Table 4-16. (At frequency ranging from 18 to 23 GHz)
	Maximum Response Amplitude(<23 GHz)dBc
(27)	Record the maximum response amplitude from Table 4-16. (At frequency ranging from 23 to 26 GHz)
	Maximum Response Amplitude(< 26.5GHz)dBc
The	following steps are for the R3265.
[3.5	to 8 GHz Band (R3265 Only)]
(28)	Set the R3265 center frequency to 7 GHz. Set the sweeper w to 7 GHz.
(29)	Rotate the CAL FACTOR switch to the power sensor's 7 GHz calibration factor on the power meter.
(30)	On the sweeper, set the power level to the power meter indicate 0dBm.
	On the R3265, press PEAK MKR \rightarrow MKR \rightarrow CF , FREQ SPAN 5 MHz ,
	MARKER ON NEXT MENU PRESELE PEAK AUTO PEAKING . Wait for the "peaking!!"
	Press MENU SWEEP SINGLE , PEAK MARKER ON MKR FIXED MKR FREQ SPAN
	MODE SWP ON/OFF ON/OFF ON/OFF
(31)	Repeat steps (7) and (8) for the sweeper frequency listed in Table 4-17 for the 3.5 to
	8GHz band's 7GHz center frequency.
(32)	Set the R3265 center frequency to 8GHz. Set the sweeper cw to 8GHz.
(33)	Rotate hte CAL FACTOR switch to the power sensor's 8GHz calibration factor on the power meter.

4-63 Jan 30/92

- (34) Repeat step (30) for the R3265.
- (35) Repeat steps (7) and (8) for the sweeper frequencies listed in Table 4-17 for the 3.5 to 8 GHz band's 8 GHz center frequency.
- (36) Record the maximum response amplitude from Table 4-17.

Maximum Response Amplitude _____dBc

Table 4-16 Image, Multiple and Out-of-Band Responses (R3271)

Band	R3271 Center Freq. (GHz)	SG CW (MHz)	Response Amplitude (dBc)	Specification (dBc)
100 Hz to 3.6 GHz Band	2.0 2.0 2.0 2.0	1957.159 1157.159 10462.841 8231.4205		-70 -70 -70 -70
3.5 GHz to 7.5 GHz Band	5.5 5.5 5.5 5.5	6342.841 11421.421 17342.841 23264.262		-70 -70 -70 -50
7.4 GHz to 15.4 GHz Band	12.0 12.0 12.0 12.0	12842.841 5789.29 18210.71 24421.421		-70 -70 -60 -50
15.2 GHz to 23.3 GHz Band	21.0 21.0 21.0	21842.841 6719.053 13859.527		-60 -70 -70
23 GHz to 26.5 GHz Band	24.4 24.4 24.4 24.4	25242.841 5783.935 11989.29 18194.645		-60 -70 -70 -60

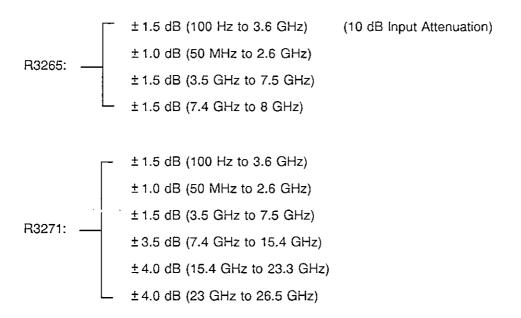

4.4 Performance Test Process

Table 4-17 Image, Multiple and Out-of-Band Responses (R3265)

Band	R3265 Center Freq. (GHz)	SG CW (MHz)	Response Amplitude (dBc)	Specification (dBc)
100 Hz to 3.6 GHz Band	2.0 2.0 2.0 2.0	1957.159 1157.159 10462.841 8231.4205		70 70 70 70
3.5 GHz to 8 GHz Band	7.0 8.0 8.0	7842.841 4632.131 3789.29		-70 -70 -70

4.4.15 Frequency Response

SPECIFICATION

Frequency response relative to the calibrator (25 MHz): $< \pm 5$ dB Band switching uncertainty: $< \pm 0.5$ dB

RELATED ADJUSTMENT

YTF adjustment.

Frequency response adjustment.

DESCRIPTION

The sweeper signal is fed through a power splitter to a power sensor and the R3265/3271. The sweeper's power level is adjusted at 25 MHz to place the displayed signal at the R3265/3271 center horizontal graticule line. The power meter is placed in RATIO mode. At each new sweeper frequency, the sweeper's power level is adjusted to the center horizontal graticule line. The power meter displays the inverse of the frequency response relative to the calibrator.

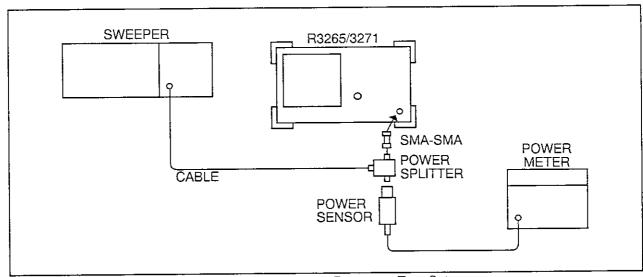


Figure 4-14 Frequency Response Test Setup

EQUIPMENT

Sweeper	HP8350 + HP83595A		
Power Meter	HP436A		
Power Sensor	HP8485A		
Power splitter			
Adapter:			
Type N to SMA	HRM-554S		
SMA (m) to SMA (m)	50-673-0000-31		
Cables:			
SMA, 70 cm	A01002		

• PROCEDURE

- (1) Zero and calibrate the power meter.
- (2) Connect the equipment as shown in Figure 4-14.

Power Level

- 4 dBm

4.4 Performance Test Process

(4)	On the R3265/3271, press the PRESET key.
	Center Freq 25 MHz CF Step 100 MHz Span 40 MHz Ref Level - 5 dBm dB/div 1 dB/div RBW 3 MHz VBW 1 KHz
(5)	Press PEAK NEXT MENU CONT PK ON/OFF
(6)	Adjust the sweeper wernier for a MKR frequency reading 100MHz ± 2MHz.
	Adjust the sweeper POWER LEVEL for a MKR amplitude reading of $-10~\mathrm{dBm}~\pm0.09~\mathrm{dB}$.
(7)	Press the dB [REF] switch on the power meter.
[Fre	quency Response (R3765/3271: 100 Hz to 3.6 GHz Band)]
(8)	Set the sweeper CW to 100 MHz.
(9)	Set the R3265/3271 CENTER FREQ to 100 MHz.
(10)	Adjust the sweeper POWER LEVEL for an R3265/3271 MKR amplitude reading of -10 dBm ±0.09 dB.
(11)	Record the reverse sign value of the power ratio displayed on the power meter in Table 4-18.
(12)	On the sweeper, press the CW and ↑ keys. On the R3265/3271, press the CENTER FREQ and ↑ keys. At each new frequency, repeat steps (10) and (11), rotating the CAL FACTOR switch to the power sensor's calibration factor Whine the peak is out of CRT display, adjust the CW VERNIER of the sweeper for near the center.

4-68

[Frequency Response (R3265/3271: 3.5 to 7.5 GHz Band)]
(13) Set the R3265/3271 CENTER FREQ to 3.6 GHz.
(14) Set the sweeper cw to 3.6 GHz.
(15) On the R3265/3271, press MARKER ON NEXT MENU PRESELE PEAK AUTO PEAKING Wait for the "peaking!!" message to disappear.
(16) Adjust the sweeper POWER LEVEL for an R3265/3271 MKR amplitude reading of -10 dBm ± 0.09 dB.
(17) Record the reverse sign value of the power ratio displayed on the power meter in Table 4-19.
(18) On the sweeper, press the CW and \(\) keys. On the R3265/3271, press the CENTER FREQ and \(\) keys. At each new frequency, repeat steps (15) through (17), rotating the CAL FACTOR switch to the power sensor's calibration factor. When the peak is out of CRT display, adjust the CW VERMER of sweeper for near the center.
[Frequency Response (R3265: 7.5 to 8.0 GHz Band) (R3271: 7.5 to 15.4 GHz Band)]
(19) Set the R3265/3271 CENTER FREQ to 7.5 GHz and CF STEP AUTOMINE to 200 MHz.
(20) Set the sweeper CW to 7.5 GHz and CW STEP SIZE to 200 MHz.
(21)On the R3265/3271, press MARKER ON NEXT MENU PRESELE PEAK SEARCH, AUTO PEAKING. Wait for the "peaking!!" message to disappear.
(22) Adjust the sweeper POWER LEVEL for an R3265/3271 MKR amplitude reading of -10 dBm ±0.09 dB.
(23) Recording the reverse sign value of the power ratio displayed on the power meter in

Table 4-20.

4.4 Performance Test Process

(24)	On the sweeper, press the CW and \(\frac{1}{2}\) keys. On the R3265/3271, press the \(\text{CENTER FREQ}\) and \(\frac{1}{2}\) keys. At each new frequency, repeat steps (21) through (23), rotating the CAL FACTOR switch to the power sensor's calibration factor.
[Fred	quency Response (R3271: 15.4 to 23.3 GHz Band)]
(25)	Set the R3271 CENTER FREQ to 15.4 GHz.
(26)	Set the sweeper cw to 15.4 GHz.
(27)	On the R3271, press MARKER ON NEXT MENU PRESELE PEAK AUTO PEAKING Wait for the "peaking!!" message to disappear.
(28)	Adjust the sweeper POWER LEVEL for an R3271 MKR amplitude reading of $-10~\mathrm{dBm}$ $\pm0.09~\mathrm{dB}.$
(29)	Record the negative value of the power ratio displayed on the power meter in Table 4-21.
(30)	On the sweeper, press the CW and ↑ keys. On the R3271, press the CENTER FREQ and ↑ keys. At each new frequency, repeat steps (27) through (29), rotating the CAL FACTOR switch to the power sensor's calibration factor.
[Free	quency Response (R3271:233 to 26.5 GHz Band)]
(31)	Set the R3271 CENTER FREQ to 23.4 GHz.
(32)	Set the sweeper cw to 23.4 GHz.
(33)	On the R3271, press MARKER ON NEXT MENU PRESELE PEAK SEARCH, AUTO PEAKING. Wait for the "peaking!!" message to disappear.
(34)	Adjust the sweeper POWER LEVEL for an R3271 MKR amplitude reading of - 10 dBm ± 0.09 dB.

4-70 Jan 30/92

4.4 Performance Test Process

(34)	Adjust the sweeper POWER LEVEL for an R3271 MKR amplitude reading of $-10~\mathrm{dBm}$ $\pm0.09~\mathrm{dB}.$
(35)	Record the reverse sign value of the power ratio displayed on the power meter in Table 4-22.
(36)	On the sweeper, press the _cw and _ heys. On the R3271, press the _center freq and _ heys. At each new frequency, repeat steps (33) through (35), rotating the CAL FACTOR switch to the power sensor's calibration factor. When the peak is out of CRT display, adjust the _cw VERNIER of the sweeper for near the center.
[Tes	et Results]
(37)	Frequency Response (R3265/3271:100 Hz to 3.6 GHz Band)
	① Enter the most positive number from Table 4-18, HP436A Reading:dB The absolute value of this number should be less than 5 dB.
	© Enter the most negative number from Table 4-18, HP436A Reading:dB The absolute value of this number should be less than 5 dB.
	③ Subtract ② from ①:dB The result should be less than 3 dB.
(38)	Frequency Response (R3265/3271:50 MHz to 2.6 GHz Band)
	① Enter most positive number from Table 4-18, HP436A Reading within the range of 100 MHz to 2.6 GHz frequency:
	© Enter most negative number from Table 4-18, HP436A Reading within the range of 100 MHz to 2.6 GHz frequency:
	③ Subtract ② from ①:dB The result should be less than 2 dB.

 $(t_{i}, t_{i}) = (t_{i}, t_{i}) \in \mathcal{F}_{i}$

(39)	Frequency Response (R3265/3271:3.5 GHz to 7.5 GHz Band)	
	① Enter the most positive number from Table 4-19, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	© Enter the most negative number from Table 4-19, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	③ Subtract ② from ①: The result should be less than 3 dB.	dB
(40)	Frequency Response (R3265:7.5 to 8 GHz Band)(R3271:7.5 to 15.4 GHz Band)	
	① Enter the most positive number from Table 4-20, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	© Enter the most negative number from Table 4-20, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	③ Subtract ② from ①: The result should be less than 7 dB (R3265:3 dB).	dB
(41)	Frequency Response (R3271:15.4 to 23.3 GHz Band)	
	① Enter the most positive number from Table 4-21, HP436A Reading:	dB
	© Enter the most negative number from Table 4-21, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	③ Subtract ② from ①: The result should be less than 8 dB.	dB
(42)	Frequency Response (R3271:23.3 to 26.5 GHz Band)	
	① Enter the most positive number from Table 4-22, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	© Enter the most negative number from Table 4-22, HP436A Reading: The absolute value of this number should be less than 5 dB.	dB
	③ Subtract ② from ①: The result should be less than 8 dB.	dB

Table 4-18 Frequency Response (R3265/3271 : 100 Hz to 3.6 GHz Band)

Table 4-19 Frequency Response (R3265/3271 : 3.6 GHz to 7.5 GHz Band)

Column 1	Column 2	Column 3
Frequency (GHz)	HP436A Reading (dB)	CAL Factor
· · · · · · · · · · · · · · · · · · ·	Neading (db)	Freq. (GHz)
3.6		4.0
3.7		4.0
3.8 3.9		4.0 4.0
4.0		4.0
4.1		4.0
4.2		4.0
4.3		4.0
4.4		4.0
4.5		5.0
4.6		5.0
4.7		5.0
4.8		5.0
4.9		5.0
5.0		5.0
5.1		5.0
5.2		5.0
5.3		5.0
5.4 5.5		5.0
5.6 5.6		6.0 6.0
5.7		6.0
5.8	•	6.0
5.9		6.0
6.0		6.0
6.1		6.0
6.2		6.0
6.3		6.0
6.4		6.0
6.5		7.0
6.6		7.0
6.7		7.0
6.8		7.0
6.9		7.0
7.0 7.1		7.0 7.0
7.1 7.2		7.0 7.0
7.3		7.0 7.0
7.4		7.0 7.0
ı ' ' '		

Table 4-20 Frequency Response (R3265 : 7.5 GHz to 8 GHz Band) (R3271 : 7.5 GHz to 15.4 GHz Band)

Column 1	Column 2	Column 3
Frequency (GHz)	HP436A Reading (dB)	CAL Factor Freq. (GHz)
7.5 7.7 7.9		8.0 8.0 8.0
<pre><r3271 only=""> 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5 9.7 9.9 10.1 10.3 10.5 10.7 10.9 11.1 11.3 11.5 11.7 11.9 12.1 12.3 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.9 14.1 14.3 14.5 14.7 14.9</r3271></pre>		8.0 8.0 9.0 9.0 9.0 9.0 10.0 10.0 10.0 11.0 11.0 11.0 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0
15.1 15.3		15.0 15.0

Table 4-21 Frequency Response (R3271: 15.4 GHz to 23.3 GHz Band)

Column 1	Column 2	Column 3
Frequency (GHz)	HP436A Reading (dB)	CAL Factor Freq. (GHz)
15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8	Heading (dB)	15.0 16.0 16.0 16.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 18.0 18.0 18.0 18.0 19.0 19.0 19.0 19.0 20.0 20.0 20.0 20.0 21.0 21.0 21.0 21
22.0 22.2 22.4 22.6		22.0 22.0 22.0 23.0
22.8 23.0 23.2		23.0 23.0 23.0 23.0

Table 4-22 Frequency Response (R3271 : 23.3 GHz to 26.5 GHz Band)

Column 1	Column 2	Column 3
Frequency (GHz)	HP436A Reading (dB)	CAL Factor Freq. (GHz)
23.4 23.6 23.8 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2		23.0 24.0 24.0 24.0 24.0 25.0 25.0 25.0 25.0 25.0 26.0 26.0 26.0
26.4		26.0 26.0

4.4.16 IF Gain Uncertainty

SPECIFICATION

IF Gain Uncertainty:

- < ± 0.5 dB, reference levels 0 dBm to -50 dBm with 10 dB input attenuation
- < ± 0.7 dB, reference levels 0 dBm to -80 dBm with 10 dB input attenuation

RELATED ADJUSTMENT

IF amplitude adjustment.

DESCRIPTION

This test measures IF gain error in resolution band width 1 MHz, 3 kHz and 300 kHz. The input signal level is decreased as the spectrum analyzer's reference level is decreased (IF gain increased). Since the signal level is decreased in precise steps, any error between the reference level and the signal level is caused by the analyzer's IF gain. The frequency synthesizer is phase-looked to the analyzer's 10 MHz reference.

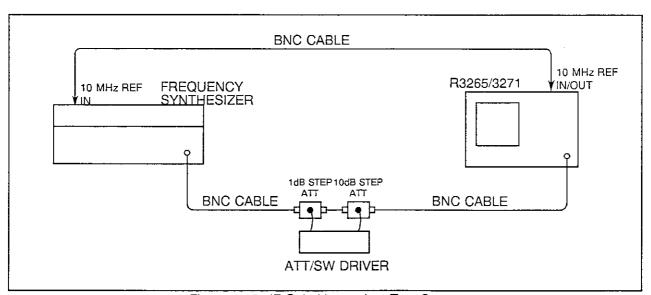


Figure 4-15 IF Gain Uncertainty Test Setup

EQUIPMENT

Frequency Synthesizer	HP3325B
1 dB Step Attenuator	HP8494H
10 dB Step Attenuator	HP8495H
Attenuator/Switch Driver	HP11713A

4.4 Performance Test Process

•	Р	R	O	С	Е	D	U	F	₹E

PHC	CEDURE
(1)	Connect the equipment as shown in Figure 4-15.
(2)	Set the frequency synthesizer controls as follows:
	Freq
(3)	On the R3265/3271, press the PRESET key and set the controls as follows:
	Center Freq 11 MHz Freq Span 0 Hz dB/div 1 dB VBW 1 Hz RBW 1 MHz
(4)	Set 1 dB and 10 dB step attenuator to 0 dB. Set the output level of the frequency synthesizer to the value 5 dB lower than the R3265/3271 reference level.
(5)	After several sweeps in the R3265/3271, press the A VIEW and PEAK keys to read
	the data on the screen and record it as the reference value. Then, press the $\begin{bmatrix} ON \end{bmatrix}$, $\begin{bmatrix} MKR \end{bmatrix}$, $\begin{bmatrix} B \end{bmatrix}$ keys and $\begin{bmatrix} WRITE \\ B \end{bmatrix}$.
(6)	Press the 1 dB step attenuator to lower the R3265/3271 reference level by 1 dB.
(7)	After several sweeps in the R3265/3271, press the PEAK key to read the marker level on the screen and record it in Table 4-23.

- (8) Repeat steps (6) and (7) until the 1 dB step attenuator is lowered to 10 dB.
- (9) Press the 10 dB step attenuator to lower the R3265/3271 reference level by 10 dB.
- (10) After several sweeps in the R3265/3271, press the PEAK key to read the data on the screen and record it in Table 4-23.
- (11) Repeat steps (9) and (10) until the 10 dB attenuator is lowered to 60 dB.
- (12) Repeat steps (2) to (11) above for the R3265/3271 resolution band width 3 kHz and 300 kHz. For resolution band width 3 kHz, repeat steps (11) until the 10 dB step attenuator is lowered to 70 dB and record the result in Table 4-24. For resolution band width 300 kHz, set dB/div to 0.5 dB/div in step (3) and record the result in Table 4-25.

Table 4-23 IF Gain Error (RBW = 1 MHZ, 1 dB/div.)

Reference value (dBm)

			7.070.07.00 74.	(02:,
R3265/3271 Reference Level (dBm)	1 dB Step Attenuator Attenuation (dB)	10 dB Step Attenuator Attenuation (dB)	⊿ Marker Level (dB)	Specification
0	0	0	0 (Ref.)	
_1	1	0		± 0.5 dB
-2	2	0		± 0.5 dB
_3	3	0		± 0.5 dB
-4	4	0		± 0.5 dB
-5	5	0		± 0.5 dB
-6	6	0		± 0.5 dB
- 7	7	0		± 0.5 dB
-8	8	0		± 0.5 dB
- 9	9	0		± 0.5 dB
– 10	10	0		± 0.5 dB
_20	10	10		± 0.5 dB
-30	10	20		± 0.5 dB
– 40	10	30		± 0.5 dB
50	10	40		± 0.5 dB
– 60	10	50		± 0.7 dB
–70	10	60		± 0.7 dB

Table 4-24 IF Gain Error (RBW = 3 kHZ, 1 dB/div.)

			Reference val	ue (dBm)
R3265/3271 Reference Level (dBm)	1 dB Step Attenuator Attenuation (dB)	10 dB Step Attenuator Attenuation (dB)	∠ Marker Level (dB)	Specification
0	0	0	0 (Ref.)	
_1	1	0		± 0.5 dB
-2	2	0		± 0.5 dB
_3	3	0		± 0.5 dB
-4	4	0		± 0.5 dB
-5	5	0		± 0.5 dB
– 6	6	0		± 0.5 dB
_7	7	0		± 0.5 dB
-8	8	0		±0.5 dB
_9	9	0		± 0.5 dB
_10	10	0		± 0.5 dB
-20	10	10		± 0.5 dB
-30	10	20		± 0.5 dB
40	10	30		± 0.5 dB
-50	10	40		± 0.5 dB
-60	10	50		± 0.7 dB
-70	10	60		±0.7 dB
-80	10	70		± 0.7 dB

Table 4-25 IF Gain Error (RBW = 300 kHZ, 0.5 dB/div.)

Reference val	<u>(dBm)</u>	

				(42,11)
R3265/3271 Reference Level (dBm)	1 dB Step Attenuator Attenuation (dB)	10 dB Step Attenuator Attenuation (dB)	⊿ Marker Level (dB)	Specification
0	0	0	0 (Ref.)	_
_1	1	0		± 0.5 dB
-2	2	0		± 0.5 dB
-3	3	0		± 0.5 dB
-4	4	0		± 0.5 dB
- 5	5	0		± 0.5 dB
- 6	6	0		± 0.5 dB
- 7	7	0		± 0.5 dB
-8	8	0		± 0.5 dB
-9	9	0		± 0.5 dB
– 10	10	0		± 0.5 dB
-20	10	10		± 0.5 dB
-30	10	20		± 0.5 dB
-40	10	30		± 0.5 dB
 50	10	40		± 0.5 dB
– 60	10	50		± 0.7 dB
– 70	10	60		± 0.7 dB

4.4.17 Scale Fidelity

SPECIFICATION

Log Scale Fidelity: ± 0.2 dB/1 dB,

 \pm 1 dB/10 dB to a maximum of \pm 1.5 dB over 0 to 90 dB range.

Linear Scale Fidelity: < ±5% of reference level

QP-mode Log Scale Fidelity: ±1.0 dB/30 dB, ±2dB/40 dB, ±1.0 dB/40 dB (25°C ±10°C)

RELATED ADJUSTMENT

IF amplitude adjustment.

DESCRIPTION

This test measures display accuracy for 1 dB, 10 dB log scales, X1, X2 linear scales and 10 dB QP mode log scale. All scales are measured with 0 dBm reference signal. Figure 4-16 illustrates the measurement system of this test. The frequency synthesizer is phase-locked to the 10 MHz reference source of the spectrum analyzer.

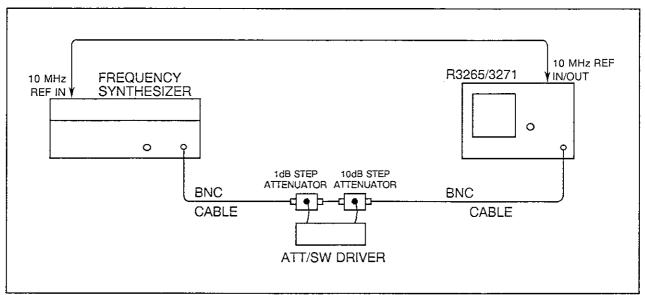


Figure 4-16 Scale Fidelity Test Setup

EQUIPMENT

Frequency Synthesizer	HP3325B
1 dB Step Attenuator	HP8494H
10 dB Step Attenuator	HP8495H
Attenuator/Switch Driver	HP11713A

4.4 Performance Test Process

	\sim		110	
ᇊ	OC	יעם	UH	

1 110	JOED OF THE
(1)	Connect the equipment as shown in Figure 4-16.
(2)	Set the frequency synthesizer controls as follows:
	Freq
(3)	On the R3265/3271, press the PRESET key and set the controls as follows:
	Center Freq 11 MHz Freq Span 0 Hz Ref Level 0 dBm RBW 1 MHz VBW 1 Hz dB/div 1 dB/div
(4)	Set the 1 dB and 10 dB step attenuators to 0 dB.
(5)	On the R3265/3271, press the MARKER ON key.
[1 d	B/div Log Scale]
(6)	On the frequency synthesizer, adjust the amplitude until the R3265/3271 marker reads exactly 0.00 dBm.
(7)	On the R3265/3271, press the A, VIEW MARKER ON and MKR keys.
	Then press the B and WRITE B.
(8)	On the R3265/3271, press the MENU key, SWEEP , SINGLE SWP.
(9)	Lower the frequency synthesizer level by 1 dB.
(10)	On the R3265/3271, press the MENU key, SWEEP, SINGLE and SINGLE SWP.
(11)	Record the ⊿ marker level in the Actual Columm in Table 4-26. Calculate the incremental error according to the following equation and record the result in the Incremental Error column in Table 4-26. Incremental error = (Current ⊿ marker level) - (Previous ⊿ marker level) + 1 dB
(12)	Repeat steps (9) to (11) until the frequency synthesizer level is set to the value 10 dB lower than the initially set level.

- (13) On the R3265/3271, press the MENU SWEEP and CONT keys set REF LEVEL and dB/div to 10 dB/div. Set the resolution band width to 3 kHz.
- (14) Set the frequency synthesizer level so that the R3265/3271 marker indicates just 0.00 dBm.
- (15) On the R3265/3271, press the A, VIEW MARKER ON and MKR keys.

 Then press the B and WRITE .
- (16) Lower the frequency synthesizer level by 10 dB. If the level cannot be lowered by 10 dB, use the 10 dB step attenuator to lower it by 10 dB.
- (17) On the R3265/3271, press the MENU, SWEEP, SINGLE and SINGLE SWP keys.
- (18) Record the ∠marker level in the Actual column in Table 4-27. Calculate the incremental error from the following expression and record the result in the Incremental Error column in Table 4-27. Incremental error = (Current ∠ marker level) (Previous ∠ marker level) + 10 dB
- (19) Repeat steps (16) to (18) until the frequency synthesizer level is set to the value 90 dB lower than the initially set level.

Table 4-26 1 dB/div. Log Scale Fidelity (RBW = 1 MHz)

Input Signal Level	dB from Reference		⊿ Marker Level				
(dBm, nominal)	Level (nominal)	Min. (dBm)	Actual (dBm)	Max. (dBm)	Error (dB)		
0	0	0	0 (Ref.)	0	0 (Ref.)		
-1	-1	1.2		-0.8			
-2	-2	-2.4		-1.6			
-3	-3	-3.6		-2.4			
-4	-4	-4.8		-3.2			
-5	- 5	-6.0		-4.0			
-6	-6	-7.0		-5.0			
-7	- 7	-8.0		-6.0			
-8	-8	-9.0		-7.0			
-9	-9	10.0		-8.0			
-10	- 10	-11.0		-9.0			

Table 4-27 10 dB/div. Log Scale Fidelity (RBW = 3 kHz)

Input Signal Level	dB from Reference	. 4	. ⊿ Marker Level				
(dBm, nominal)	Level (nominal)	Min. (dBm)	Actual (dBm)	Max. (dBm)	Error (dB)		
0	0	0	0 (Ref.)	0	0 (Ref.)		
-10	-10	– 11		9			
-20	-20	-21.5		– 18.5			
-30	-30	-31.5		-28.5			
-40	-40	-41.5		-38.5			
-50	-50	-51.5		- 48.5			
- 60	-60	-61.5		-58.5			
-70	- 7 0	−71 . 5		-68.5	·		
-80	- 80 '	-81. 5		-78.5 .			
-90	– 90	-91.5		- 88.5			

[Linear Scale]

4.4 Performance Test Process

(20)	Set the frequency synthesizer as follows:
	Freq
	Set the 1 dB and 10 dB attenuator to 0 dB.
(21)	On the R3265/3271, press the PRESET key and set the controls as follows:
	Center Freq 11 MHz Freq Span 10 kHz Ref Level 0 dBm RBW 1 kHz VBW 1 kHz ATT 20 dB
(22)	On the R3265/3271, press the REF LEVEL , LINEAR and X1 keys to select the linear
	X1 mode. Then, press the MARKER ON key.
(23)	Precisely set the frequency synthesizer level to the R3265/3271 reference level while reading the marker level on the screen.
(24)	On the R3265/3271, press the MENU , SWEEP and SINGLE keys to set the single sweep mode.
(25)	Read the level value displayed on the frequency synthesizer and set the value as the reference value (Ref). Then, set the frequency synthesizer level to the value 0.92 dB lower than the reference value.
(26)	On the R3265/3271, perform single sweep twice, read the marker level and record it in Table 4-28.
(27)	Set the frequency synthesizer level as shown in the Input Signal Level column in Table 4-28 sequentially and repeat step (26) for each.

Table 4-28 Linear Scale Fidelity (X1)

Input Sig	nal Level	Div. from	Marker Level		
(dB, nominal)	(mV, nominal)	Reference Level	Min. (mV)	Actual (mV)	Max. (mV)
0 (Ref.)	223.6	0	223.6	223.6 (Ref.)	223.6
-0.92	201.24	1	190.06		212.42
−1.94	178.88	2	167.7		190.06
- 3.10	156.52	3	145.34		167.7
-4.44	134.16	4	122.98		145.34
-6.02	111.8	5	100.62		122.98
−7.96	89.44	6	78.26		100.62
-10.46	67.08	7	55.9		78.26
– 13.98	44.72	8	33.54		55.9
-20	22.36	9	11.18		33.54

Table 4-29 QP-mode Log Scale Fidelity

Input Signal Level	dB from Reference Level		el .	
(dBm, nominal)	(dB, nominal)	Min. (dBm)	Actual (dBm)	Max. (dBm)
0 (Ref.)	0	0	0 (Ref.)	0
- 10	-10	11		-9
-20	-20	-21		19
-30	-30	-31		-29
-40	-40	 41*		−39**
			1	i .

^{*: - 42} dBm when the ambient temperature is out of range 25°C ± 10°C.

^{**:} -38 dBm whe the ambient temperature is out of range 25°C ± 10 °C.

4.4 Performance Test Process

[QP	-mode Log Scale]
(28)	Set the frequency synthesizer as follows:
	Freq
	Set the 1dB and 10dB attenuator to 0dB.
(29)	On the R3265/3271, press the PRESET key and set the controls as follows:
	Center Freq
(30)	On the R3265/3271, press the SHIFT , OP keys to set the QP mode.
	Then, press the MARKER ON key.
(31)	Precisely set the frequency synthesizer level to the R3265/3271 reference level.
(32)	On the R3265/3271, press the A, VIEW A MARKER ON and MKR keys. Then, press the B key and WRITE B.
(33)	L
(33)	Lower the frequency synthesizer level by 10 dB. After (2) to (3) seconds, read the △ marker level on the screen and record it in Table 4-29.
(34)	Repeat step (33) until the frequency synthesizer level is set to the value 40 dB lower than the level set in step (31).

4.4.18 Input Attenuator Accuracy

• SPECIFICATION

Input attenuator accuracy (referenced to 10 dB input attenuation, for 20 to 70 dB settings):

R3265:

100 Hz to 8 GHz: $< \pm 1.1$ dB/10 dB step to a maximum of ± 2.0 dB

R3271: - 100 Hz to 12.4 GHz: < ± 1.1 dB/10 dB step to a maximum of ± 2.0 dB 12.4 GHz to 18 GHz: < ± 1.3 dB/10 dB step to a maximum of ± 2.5 dB 18 GHz to 26.5 GHz: < ± 1.8 dB/10 dB step to a maximum of ± 3.5 dB

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

This test measures the input attenuator's switching accuracy over the full 70 dB.

The number of frequency measured points is one point at 4 GHz for the R3265, and three points at 4 GHz, 15 GHz and 18 GHz for the R3271.

The synthesized sweeper is phase-locked to the spectrum analyzer's 10 MHz reference. The input attenuator switching accuracy is referenced to the 10 dB attenuator setting. Step-to-step accuracy is calculated from switching accuracy data.

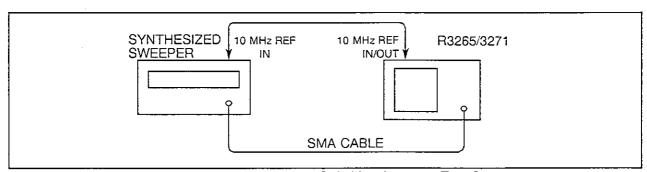


Figure 4-17 Input Attenuator Switching Accuracy Test Setup

EQUIPMENT

Synthesized Sweeper:

Frequency Range:10 MHz to 18 GHz (Critical Specifications for Equipment Substitution)

TR4515

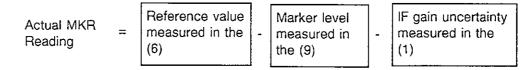
(Recommended model)

4.4 Performance Test Process

•	PF	ROC	CED	UF	RΕ

(1) IF gain uncertainty is measured when the resolution bandwidth is set to 3kHz and the result is filled in on the IF Gain uncertainty of Table 4-30. For the test method, refer to "4.4.16 IF Gain Uncertainty".

	CAUTION —
IF gain ur	gain uncertainty when the resolution bandwidth is set to 3kHz before doing this test. ncertainty is included in the measurement result because of IF gain's changing and in this test.
(2)	Connect the equipment as shown in Figure 4-17.
(3)	Set the synthesized generator controls as follows:
	Freq
(4)	On the R3265/3271, press the PRESET key and set the controls as follows:
	Center Freq 4 GHz Freq Span 10 kHz Ref Level 0 dBm dB/div 1 dB/div RBW 3 kHz VBW 10 Hz SWP 1 sec
(5)	On the synthesized generator, adjust the POWER LEVEL to place the peak of the signal five divisions below the R3265/3271 reference level.
(6)	On the R3265/3271, press the MENU key, SWEEP, SINGLE and SINGLE SWP and PEAK key, read the MKR level and record it in Table 4-30 as the reference value.
(7)	On the R3265/3271, press the CPL , ATT and heys.


4.4 Performance Test Process

(8) On the R3265/3271, press the MENU key, SWEEP SINGLE SWP and SINGLE SWP

Press the PEAK key, read the MKR level. The marker level measured here is subtracted from the reference value measure in the (6).

IF gain uncertainty measured in the (1) is subtracted from the value.

Records it in Table 4-30 as Actual MKR Reading.

- (9) Repeat steps (7) and (8) for the remaining R3265/3271 ATT setting listed in Table 4-30.
- (10) Calculate the step-to-step accuracy as described in the following steps and record the results in Table 4-30. Step-to-step accuracy should be within the limits shown in Table 4-30.

[Step-to-Step Accuracy Calculation]

- (11) For the 20 dB ATT setting, switching accuracy becomes step-to-step accuracy.
- (12) For the 30, 40, 50, 60 and 70 dB ATT settings, subtract the 10dB down ATT switching accuracy from the current ATT switching accuracy.
- (13) Center Frequency is changed to 15GHz and 18GHz and the operations in (2) to (12) are executed for R3271. Fill in the value measured in the (1) when Center Frequency is 4GHz on the IF Gain Uncertainty Table 4-30.

Table 4-30 Input Attenuator Accuracy

[R3265]

Center Frequency: 4 GHz, Reference value____dBm

R3265	IF Gain	IF Gain	S	witching Accu	uracy	Step-to-Ste	p Accuracy
Attenuator (dB)	(dB)	Uncertainty (dB)	Min. (dB)	Actual (dB)	Max. (dB)	Actual (dB)	Spec. (dB)
10 20 30 40 50 60	0 10 20 30 40 50 60	0	0 (Ref.) -2 -2 -2 -2 -2	0 (Ref.)	0 (Ref.) +2 +2 +2 +2 +2 +2	0 (Ref.)	0 (Ref.) ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1

[R3271]

Center Frequency: 4 GHz, Reference value____dBm

R3271	IF Gain	IF Gain Uncertainty	S	witching Acc	uracy	Step-to-Ste	p Accuracy
Attenuator (dB)	(dB)	(dB)	Min. (dB)	Actual (dB)	Max. (dB)	Actual (dB)	Spec. (dB)
10 20 30 40 50 60	0 10 20 30 40 50	0	0 (Ref.) -2 -2 -2 -2 -2	0 (Ref.)	0 (Ref.) +2 +2 +2 +2 +2 +2	0 (Ref.)	0 (Ref.) ±1.1 ±1.1 ±1.1 ±1.1 ±1.1

[R3271]

Center Frequency: 15 GHz, Reference value____dBm

R3271	IF Gain	IF Gain	S	witching Acci	uracy	Step-to-Ste	o Accuracy
Attenuator (dB)	(dB)	Uncertainty (dB)	Min. (dB)	Actual (dB)	Max. (dB)	Actual (dB)	Spec. (dB)
10 20 30 40 50 60	0 10 20 30 40 50	0	0 (Ref.) -2.5 -2.5 -2.5 -2.5 -2.5	0 (Ref.)	0 (Ref.) +2.5 +2.5 +2.5 +2.5 +2.5 +2.5	0 (Ref.)	0 (Ref.) ±1.3 ±1.3 ±1.3 ±1.3 ±1.3

[R3271]

Center Frequency: 15 GHz, Reference value____dBm

R3271	IF Gain		Switching Accuracy			Step-to-Step Accuracy	
Attenuator (dB)	(dB)	Uncertainty (dB)	Min. (dB)	Actual (dB)	Max. (dB)	Actual (dB)	Spec. (dB)
10 20 30 40 50	0 10 20 30 40 50	0	0 (Ref.) -3.5 -3.5 -3.5 -3.5 -3.5	0 (Ref.)	0 (Ref.) +3.5 +3.5 +3.5 +3.5 +3.5	0 (Ref.)	0 (Ref.) ±1.8 ±1.8 ±1.8 ±1.8
70	60		-3.5		+3.5		± 1.8

4.4.19 Sweep Time Accuracy

SPECIFICATION

For Span = 0 Hz Sweep Time $\leq \pm 3\%$

RELATED ADJUSTMENT

There is no related adjustment procedure for this performance test.

DESCRIPTION

A low frequency signal (Square Wave) is displayed on the R3265/3271 Spectrum Analyzer in ZERO Span mode, and measure the frequency of the displayed signal.

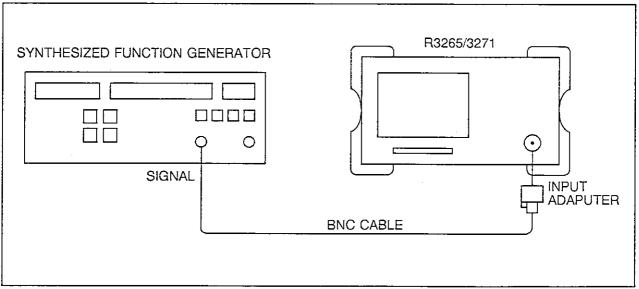


Figure 4-18 Sweep Time Accuracy Test Setup

EQUIPMENT

Synthesized Function Generator	HP3325A
Adapters:	
Type N(m)to-BNC(f)	JCF-AF00IEXO3
Cable:	
BNC, 150 cm	MI-09

4.4 Performance Test Process

PROCEDURE

(1)	Connect the equipment as shown in Figure 4-18 using the BNC cable from the H	IP3325A
	SIGNAL OUT.	

Connected it to the R3265/3271 INPUT.

(2) On the R3265/3271, press the PRESET key and set the controls as follows:

Center Freq	0 MHz
Span	0 MHz
Sweep Time	50 µs
dB/div	1 dB/div

(3) On the HP3325A, set the controls as follows:

Frequency	22 kHz
Amplitude	– 10 dBm
Function	Square

(4) On the R3265/3271, press MENU key, set TRIG and VIDEO, and adjust with the knob to trigger with VIDEO. And press the MENU key, SWEEP, SINGLE and SINGLE and SINGLE.

Wait for the sweeper stops.

(5) On the R3265/3271, press the MARKER ON key. Set the marker at the second rising edge from left.

Record the Marker time as the Measured Sweep Time in Table 4-31 for the 50 s Sweep Time setting.

The Measured Sweep Time should be within the limits shown in Table 4-31.

(6) Repeat step (5) for the HP3325A frequencies and R3265/3271 sweep times as indicated in Table 4-31.

Jan 30/92

Table 4-31 Sweep Time Accuracy

HP3325A	R3265/3271		Marker Readin	g
Frequency	Sweep Time Setting	Min.	Actual	Max.
22 kHz	50 µs	44.1 µs		46.8 µs
11 kHz	100 µs	88.2 µs		93.6 μs
5.5 kHz	200 µs	177 µs		187 µs
2.2 kHz	500 µs	441 µs		468 µs
1.1 kHz	1 ms	882 µs		936 µs
550 Hz	2 ms	1.77 ms		1.87 ms
220 Hz	5 ms	4.41 ms		4.68 ms
110 Hz	10 ms	8.82 ms		9.36 ms
55 Hz	20 ms	17.7 ms		18.7 ms
22 Hz	50 ms	44.1 ms		46.8 ms
11 Hz	100 ms	88.2 ms		93.6 ms
5.5 Hz	200 ms	177 ms		187 ms
2.2 Hz	500 ms	441 ms		468 ms
1.1 Hz	1 s	882 ms		936 ms
0.55 Hz	2 s	1.77 s		1.87 s
0.22 Hz	5 s	4.41 s		4.68 s
0.11 Hz	10 s	8.82 s		9.36 s
0.055 Hz	20 s	17.7 s		18.7 s
0.022 Hz	50 s	44.1 s		46.8 s
0.011 Hz	100 s	88.2 s		93.6 s

4.4.20 Calibration Amplitude Accuracy

• SPECIFICATION

Amplitude: - 10 dBm ± 0.3 dB

- RELATED ADJUSTMENT Calibration amplitude adjustment.
- DESCRIPTION
 The amplitude accuracy of the CALOUT signal are checked for 10 dBm ± 0.3 dBm.

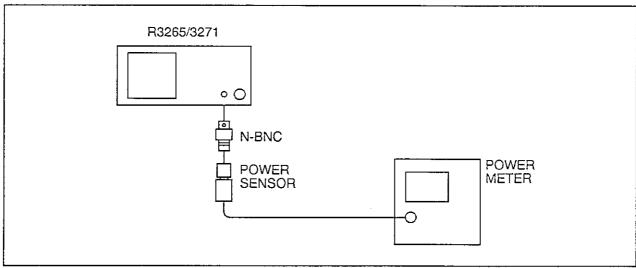


Figure 4-19 Calibration Amplitude Accuracy Test Setup

EQUIPMENT

 Power Meter
 HP436A

 Power Sensor
 HP8481A

• PROCEDURE

- (1) Connect the equipment as shown in Figure 4-19.
- (2) Press the power sensor zero of the power meter and calibrate the power sensor. Enter the power sensor's 25 MHz calibration factor into the power meter.
- (3) Connect the power sensor via an N(f) BNC(m) adapter directly to the CALOUT connector. Read the power meter display. The power level should be within the following limits (±0.3 dB):

 Actual

- 10.3 dBm≤ ____≤ - 9.7 dBm

4.5	Che	eckl	ist/D	ata	Form
-----	-----	------	-------	-----	------

4.5	Chec	klist/	Data	Form
┱.∪	OHEC	NIOU	Daia	1 (111)

File No.	:		Description	:	SPECTRUM ANALYZER
UUT MFR	:	ADVANTEST CO.	ID No.	:	
Model	:	R3265/3271	Date	:	

Table 4-32 Performance Test Record (1 of 12)

Para.	Test Description		Results	
No.	Test Description	Min.	Actual	Max.
1	Frequency Readout Accuracy and Frequency Counter Marker Accuracy			
	2.0 GHz CENTER FREQ 1 MHz SPAN 10 MHz SPAN 20 MHz SPAN 50 MHz SPAN 100 MHz SPAN 2 GHz SPAN	1.99994829 GHz 1.99968479 GHz 1.99935479 GHz 1.99845479 GHz 1.99684979 GHz 1.93954979 GHz		2.00005171 GHz 2.00031521 GHz 2.00064521 GHz 2.00154521 GHz 2.00315021 GHz 2.06045021 GHz
	5.0 GHz CENTER FREQ 1 MHz SPAN 10 MHz SPAN 20 MHz SPAN 50 MHz SPAN 100 MHz SPAN 2 GHz SPAN	4.99994799 GHz 4.99968449 GHz 4.99935449 GHz 4.99845449 GHz 4.99684949 GHz 4.93954949 GHz		5.00005201 GHz 5.00031551 GHz 5.00064551 GHz 5.00154551 GHz 5.00315051 GHz 5.06045051 GHz
	<r3271 only=""> 11.0 GHz CENTER FREQ 1 MHz SPAN 10 MHz SPAN 20 MHz SPAN 50 MHz SPAN 100 MHz SPAN 2 GHz SPAN</r3271>	10.99994739 GHz 10.99968389 GHz 10.99935389 GHz 10.99845389 GHz 10.99684889 GHz 10.93954889 GHz		11.00005261 GHz 11.00031611 GHz 11.00064611 GHz 11.00154611 GHz 11.00315111 GHz 11.06045111 GHz
	18.0 GHz CENTER FREQ 1 MHz SPAN 10 MHz SPAN 20 MHz SPAN 50 MHz SPAN 100 MHz SPAN 2 GHz SPAN	17.99994669 GHz 17.99968319 GHz 17.99935319 GHz 17.99845319 GHz 17.99684819 GHz 17.93954819 GHz		18.00005331 GHz 18.00031681 GHz 18.00064681 GHz 18.00154681 GHz 18.00315181 GHz 18.06045181 GHz

Table 4-32 Performance Test Record (2 of 12)

Para.	Test Description		Results		
No.	rest Description	Min.	Actual	Max.	
1	Frequency Readout Accuracy and Frequency Counter Marker Accuracy (cont'd)	·			
	Frequency Counter Marker Accuracy 2.0 GHz CENTER FREQ 5.0 GHz CENTER FREQ 11.0 GHz CENTER FREQ	1.999999794 GHz 4.999999494 GHz 10.999998889 GHz		2.000000206 GHz 5.000000506 GHz 11.000001111 GHz	
	18.0 GHz CENTER FREQ	17.999998184 GHz		18.000001816 GHz	
2	Frequency Reference Output Accuracy 10 MHz Reference Frequency	24.9999975 MHz		25.0000025 MHz	
3	Residual FM Residual FM			3 Hz	
4	Frequency Drift 50.1 kHz SPAN 200 Hz SPAN			2.5 kHz 60 Hz	
5	Noise Sidebands				
	2.6 GHz Center Frequency 1 kHz Offset 10 kHz Offset 100 kHz Offset			– 100 dBc/Hz – 110 dBc/Hz – 114 dBc/Hz	
	3.7 GHz Center Frequency 1 kHz Offset 10 kHz Offset 100 kHz Offset			– 95 dBc/Hz – 108 dBc/Hz – 110 dBc/Hz	

Table 4-32 Performance Test Record (3 of 12)

_			D 13-	
Para.	Test Description		Results	
No.		Min.	Actual	Max.
6	Frequency Span Accuracy			
	2 GHz Center Frequency			
	20 kHz SPAN	15.2 kHz		40.0 141-
	50 kHz SPAN	38.0 kHz		16.8 kHz
	400 kHz SPAN	304 kHz		42 kHz 336 kHz
	2 MHz SPAN	1.52 MHz		l.
	2.01 MHz SPAN	1.552 MHz		1.68 MHz 1.648 MHz
	5 MHz SPAN	3.88 MHz		
	10 MHz SPAN	7.76 MHz		4.12 MHz
	20 MHz SPAN	15.52 MHz		8.24 MHz
	50 MHz SPAN	38.8 MHz		16.48 MHz
	100 MHz SPAN	77.6 MHz		41.2 MHz
	200 MHz SPAN	155.2 MHz		82.4 MHz
	500 MHz SPAN	388 MHz		164.8 MHz
	1 GHz SPAN	1		412 MHz
	2 GHz SPAN	776 MHz		824 MHz
	2 GHZ SPAN	1.552 GHz		1.648 GHz
	4.5 GHz Center Frequency			
	4 GHz SPAN	3.104 GHz		3.296 GHz
	8 GHz SPAN	6.208 GHz		6.592 GHz
	<r3271 only=""></r3271>			
	10 GHz Center Frequency			
	10 MHz SPAN	7.76 MHz		8.24 MHz
	100 MHz SPAN	77.6 MHz		82.4 MHz
	1 GHz SPAN	776 MHz		824 MHz
	2 GHz SPAN	1.552 GHz		1.6484 GHz
	2 3 2 3	1.002 0112		1.0404 (1.12
	17 GHz Center Frequency			
	10 MHz SPAN	7.76 MHz		8.24 MHz
	100 MHz SPAN	77.6 MHz		82.4 MHz
	1 GHz SPAN	776 MHz		824 MHz
	2 GHz SPAN	1.552 GHz		1.648 GHz
	10 GHz Center Frequency			
	5 GHz SPAN	3.88 GHz		4.12 GHz
	10 GHz SPAN	7.76 GHz		8.24 GHz
	19 GHz SPAN	15.52 GHz		16.48 GHz
1	10 01 12 01 AN	10.02 0112		10.40 GHZ

Table 4-32 Performance Test Record (4 of 12)

Para.	Tost Description		Results	
No.	Test Description	Min.	Actual	Max.
6	Frequency Span Accuracy (cont'd)			
	LOG Span Accuracy			
	100 MHz Start Frequency 200 MHz TR4515 FREQ 500 MHz TR4515 FREQ 800 MHz TR4515 FREQ	179 MHz 449 MHz 719 MHz		221 MHz 551 MHz 881 MHz
	10 MHz Start Frequency 20 MHz TR4515 FREQ 50 MHz TR4515 FREQ 80 MHz TR4515 FREQ 100 MHz TR4515 FREQ 200 MHz TR4515 FREQ 500 MHz TR4515 FREQ 800 MHz TR4515 FREQ	17 MHz 44 MHz 71 MHz 89 MHz 179 MHz 449 MHz 719 MHz		23 MHz 56 MHz 89 MHz 111 MHz 221 MHz 551 MHz 881 MHz
	1 MHz Start Frequency 10 MHz TR4515 FREQ 20 MHz TR4515 FREQ 50 MHz TR4515 FREQ 80 MHz TR4515 FREQ 100 MHz TR4515 FREQ 200 MHz TR4515 FREQ 500 MHz TR4515 FREQ 800 MHz TR4515 FREQ	8 MHz 17 MHz 44 MHz 71 MHz 89 MHz 179 MHz 449 MHz 719 MHz		12 MHz 23 MHz 56 MHz 89 MHz 111 MHz 221 MHz 551 MHz 881 MHz
7	Resolution Bandwidth Accuracy and Selectivity			
	Resolution Bandwidth Accuracy 3 MHz 1 MHz 300 kHz 100 kHz 30 kHz 10 kHz 3 kHz 1 kHz 3 kHz 1 kHz 300 Hz 100 Hz 100 Hz 100 Hz 100 Hz Digital IF 30 Hz Digital IF	2.25 MHz 850 kHz 255 kHz 85 kHz 25.5 kHz 8.5 kHz 2.55 kHz 850 Hz 255 Hz 255 Hz 50 Hz 15 Hz 5 Hz		3.75 MHz 1.15 MHz 345 kHz 115 kHz 34.5 kHz 11.5 kHz 3.45 kHz 1150 Hz 345 Hz 115 Hz 37.5 Hz 150 Hz 45 Hz

Table 4-32 Performance Test Record (5 of 12)

Para.	Tost Description		Results	
No.	Test Description	Min.	Actual	Max.
7	Resolution Bandwidth Accuracy and Selectivity (cont'd)			
	Resolution Bandwidth Selectivity 3 MHz 1 MHz 300 kHz 100 kHz 30 kHz 10 kHz 3 kHz 1 kHz 3 kHz 1 kHz 300 Hz 100 Hz 300 Hz 100 Hz Jogital IF 30 Hz Digital IF			15 15 15 15 15 15 15 15 20 5 (nominal) 5 (nominal)
8	Resolution Bandwidth Switching Uncertainty 3 MHz 1 MHz 300 kHz 100 kHz 30 kHz 10 kHz 3 kHz 1 kHz 3 kHz 1 kHz 300 Hz 100 Hz 100 Hz 100 Hz 100 Hz Digital IF 30 Hz Digital IF	- 0.3 dB - 1.5 dB - 1.5 dB - 1.5 dB - 1.5 dB		+ 0.3 dB + 1.5 dB + 1.5 dB + 1.5 dB + 1.5 dB

Table 4-32 Performance Test Record (6 of 12)

Para.	Test Description	Results		
No.	rest Description	Min.	Actual	Max.
9	Displayed Average Noise Level			
	<r3265 only=""> 1 kHz</r3265>			05 00 dD
	10 kHz			- 95.23 dBm - 95.23 dBm
	100 kHz			-96.23 dBm
1	1.1 MHz			- 120.23 dBm
	10.1 MHz			-125.21 dBm
	101 MHz			-125.07 dBm
	501 MHz			-124.45 dBm
	1001 MHz			-123.68 dBm
	1.5 GHz			- 122.90 dBm
	2.0 GHz			- 122.13 dBm
	2.5 GHz			-121.35 dBm
	3.0 GHz			- 120.58 dBm
	3.5 GHz			-119.80 dBm
	3.5 GHz to 8 GHz			-120.23 dBm
	24 MHz (Low Noise)	,		- 145.00 dBm
	<r3271 only=""></r3271>	·		
	1 kHz			- 95.23 dBm
	10 kHz			−95.23 dBm
	100 kHz			-96.23 dBm
	1.1 MHz			-120.23 dBm
	10.1 MHz			- 120.21 dBm
	101 MHz			- 120.07 dBm
	501 MHz			- 119.45 dBm
	1001 MHz			-118.68 dBm
	1.5 GHz 2.0 GHz			-117.90 dBm
	2.0 GHz 2.5 GHz			- 117.13 dBm - 116.35 dBm
	3.0 GHz			- 115.35 dBm - 115.58 dBm
	3.5 GHz			- 115.56 dBm
	3.5 GHz to 7.5 GHz			- 115.23 dBm
	7.5 GHz to 15.4 GHz			- 108.23 dBm
	15.2 GHz to 23.3 GHz			- 101.23 dBm
	23 GHz to 26.5 GHz			- 95.23 dBm

Table 4-32 Performance Test Record (7 of 12)

Para.	T- 10 - 11		Results	
No.	Test Description	Min.	Actual	Max.
10	Gain Compression			
	<r3265 only=""> 10.5 MHz 200.5 MHz 3600.5 MHz</r3265>	– 10 dBm – 5 dBm – 5 dBm		
	<r3271 only=""> 10.5 MHz 200.5 MHz 3600.5 MHz</r3271>	−5 dBm +5 dBm −5 dBm		
11	Residual Response 1 MHz to 3.6 GHz 3.5 GHz to 7.5 GHz			– 100 dBm – 90 dBm
12	Second Harmonic Distortion INPUT FREQ: 1.5 GHz INPUT FREQ: 1.9 GHz			- 70 dBc - 100 dBc
13	Third Order Intermodulation Distortion			
	<r3265 only=""> 10.5 MHz 205 MHz 3600 MHz</r3265>			(Mixer Input Level) : -20dBm - 40 dBc - 50 dBc - 55 dBc
	<r3271 only=""> 10.5 MHz 3600 MHz</r3271>			– 50 dBc – 55 dBc
14	Image, Multiple, and Out-of-Band Response			
	Maximum Response Amplitude			
	<r3265 only=""> 10 MHz to 8 GHz</r3265>			– 70 dBc
	<r3271 only=""> 10 MHz to 18 GHz 10 MHz to 23 GHz 10 MHz to 26.5 GHz</r3271>			− 70 dBc − 60 dBc − 50 dBc

Table 4-32 Performance Test Record (8 of 12)

Para.	Test Description	Results		
No.	rest Description	Min.	Actual	Max.
15	Frequency Response			
	<r3265 only=""> 100 MHz to 3.6 GHz 50 MHz to 2.6 GHz 3.5 GHz to 7.5 GHz 7.4 GHz to 8 GHz</r3265>	– 1.5 dB – 1.0 dB – 1.5 dB – 1.5 dB		+1.5 dB +1.0 dB +1.5 dB +1.5 dB
	<r3271 only=""> 100 MHz to 3.6 GHz 50 MHz to 2.6 GHz 3.5 GHz to 7.5 GHz 7.4 GHz to 15.4 GHz 15.4 GHz to 23.3 GHz 23.0 GHz to 26.5 GHz</r3271>	1.5 dB 1.0 dB 1.5 dB 3.5 dB 4.0 dB 4.0 dB		+1.5 dB +1.0 dB +1.5 dB +3.5 dB +4.0 dB +4.0 dB
16	IF Gain Uncertainty			:
	RBW 1 MHz Attenuation 1 dB 2 dB 3 dB 4 dB 5 dB 6 dB 7 dB 8 dB 9 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB	- 0.5 dB - 0.7 dB - 0.7 dB		+0.5 dB +0.5 dB +0.7 dB +0.7 dB

Table 4-32 Performance Test Record (9 of 12)

Para.	Test Description	Results		
No.	rest Description	Min.	Actual	Max.
16	IF Gain Uncertainty (cont'd)			
	RBW 3 kHz Attenuation			
	1 dB	- 0.5 dB		+0.5 dB
	2 dB	−0.5 dB		+0.5 dB
	3 dB	0.5 dB		+0.5 dB
	4 dB	- 0.5 dB		+0.5 dB
	5 dB	- 0.5 dB		+0.5 dB
1	6 dB	−0.5 dB		+0.5 dB
	7 dB	-0.5 dB		+0.5 dB
	8 dB	0.5 dB		+0.5 dB
1	9 dB	– 0.5 dB		+0.5 dB
ŀ	10 dB.	0.5 dB		+0.5 dB
	20 dB	-0.5 dB		+0.5 dB
	30 dB	- 0.5 dB		+ 0.5 dB
	40 dB	-0.5 dB		+0.5 dB
	50 dB	-0.7 dB		+0.7 dB
	60 dB	-0.7 dB	•	+0.7 dB
	70 dB	−0.7 dB		+0.7 dB
	RBW 300 kHz Attenuation			
	1 dB	-0.5 dB		+0.5 dB
	2 dB	-0.5 dB		+0.5 dB
1	3 dB	-0.5 dB		+ 0.5 dB
	4 dB	-0.5 dB		+0.5 dB
	5 dB	−0.5 dB		+0.5 dB
j l	6 dB	− 0.5 dB		+ 0.5 dB
	7 dB 8 dB	-0.5 dB		+0.5 dB
	9 dB	0.5 dB 0.5 dB		+0.5 dB +0.5 dB
	10 dB	= 0.5 dB = 0.5 dB		+0.5 dB
İ	20 dB	- 0.5 dB - 0.5 dB		+0.5 dB +0.5 dB
	30 dB	- 0.5 dB - 0.5 dB		+0.5 dB +0.5 dB
	40 dB	-0.5 dB -0.5 dB		+0.5 dB +0.5 dB
	50 dB	-0.7 dB		+ 0.7 dB
]	60 dB	-0.7 dB		+ 0.7 dB

Table 4-32 Performance Test Record (10 of 12)

Para. No.	Test Description	Results		
		Min.	Actual	Max.
17	Scale Fidelity			
	1 dB/div Log Scale Fidelity			
	-1 dB	-0.2 dB		+0.2 dB
1	-2 dB	-0.4 dB		+0.4 dB
	-3 dB	-0.6 dB		+0.6 dB
	-4 dB	-0.8 dB		+0.8 dB
	-5 dB -6 dB	-1.0 dB		+1.0 dB
	-7 dB	-1.0 dB -1.0 dB		+1.0 dB +1.0 dB
[-8 dB	-1.0 dB		+1.0 dB +1.0 dB
	-9 dB	-1.0 dB		+ 1.0 dB
	-10 dB	-1.0 dB		+1.0 dB
	10 dB/div Log Scale Fidelity			
	-10 dB	1.0 dB		+1.0 dB
	-20 dB	1.5 dB		+1.5 dB
	30 dB	-1.5 dB		+ 1.5 dB
	−40 dB −50 dB	-1.5 dB	•	+1.5 dB
	-60 dB	- 1.5 dB - 1.5 dB		+1.5 dB +1.5 dB
	-70 dB	- 1.5 dB		+ 1.5 dB
	-80 dB	- 1.5 dB		+1.5 dB
	-90 dB	−1.5 dB		+1.5 dB
	Linear Scale Fidelity	!		
	div from Ref Level			
	1	190.06 mV		212.42 mV
	2 3	167.7 mV		190.06 mV
	4	145.34 mV 122.98 mV		167.7 mV 145.34 mV
	5	100.62 mV		122.98 mV
	6	78.26 mV		100.62 mV
	7	55.9 mV		78.26 mV
	8	33.54 mV		55.9 mV
	9	11.18 mV		33.54 mV
	QP-mode Log Scale Fidelity			
	dB from Ref Level			
	−10 dB	-11 dBm		−9 dBm
	-20 dB	-21 dBm		−19 dBm
	-30 dB	-31 dBm	i	−29 dBm
	-40 dB	-41 dBm		-39 dBm

Table 4-32 Performance Test Record (11 of 12)

Para.	Test Description	Results		
No.		Min.	Actual	Max.
18	Input Attenuator Accuracy (4 GHz Center Freq) Switching Accuracy 20 dB 30 dB	-2 dB -2 dB		+2 dB +2 dB
	40 dB 50 dB 60 dB	-2 dB -2 dB -2 dB		+2 dB +2 dB +2 dB
	70 dB Step-to-Step Accuracy	-2 dB		+2 dB
	20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	-1.1 dB -1.1 dB -1.1 dB -1.1 dB -1.1 dB -1.1 dB		+1.1 dB +1.1 dB +1.1 dB +1.1 dB +1.1 dB +1.1 dB
	<r3271 only=""> (15 GHz Center Freq) Switching Accuracy 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB</r3271>	-2.5 dB -2.5 dB -2.5 dB -2.5 dB -2.5 dB -2.5 dB		+ 2.5 dB + 2.5 dB + 2.5 dB + 2.5 dB + 2.5 dB + 2.5 dB
	Step-to-Step Accuracy 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	1.3 dB 1.3 dB 1.3 dB 1.3 dB 1.3 dB 1.3 dB		+1.3 dB +1.3 dB +1.3 dB +1.3 dB +1.3 dB +1.3 dB
	(18 GHz Center Freq) Switching Accuracy 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	-3.5 dB -3.5 dB -3.5 dB -3.5 dB -3.5 dB -3.5 dB		+3.5 dB +3.5 dB +3.5 dB +3.5 dB +3.5 dB +3.5 dB

4-108

Table 4-32 Performance Test Record (12 of 12)

Para.	Test Description	Results		
No.		Min.	Actual	Max.
18	Input Attenuator Accuracy (cont'd)			
	<r3271 only=""></r3271>			
	Step-to-Step Accuracy			
	20 dB	-1.8 dB		+ 1.8 dB
	30 dB	-1.8 dB		+ 1.8 dB
	40 dB	- 1.8 dB		+ 1.8 dB
	50 dB	-1.8 dB		+ 1.8 dB
	60 dB	-1.8 dB	İ	+1.8 dB
	70 dB	-1.8 dB		+1.8 dB
19	Sweep Time Accuracy			
	50 μs	44.1 <i>μ</i> s	Ì	46.8 μs
	100 <i>μ</i> s	88.2 μs		93.6 µs
	200 μs	177 μs		187 µs
	500 μs	441 μs		468 μs
	1 ms	882 μs		936 μs
	2 ms	1.77 ms		1.87 ms
	5 ms	4.41 ms		4.68 ms
	10 ms	8.82 ms		9.36 ms
	20 ms	17.7 ms		18.7 ms
	50 ms	44.1 ms		46.8 ms
	100 ms	88.2 ms		93.6 ms
	200 ms	177 ms		187 ms
	500 ms	441 ms		468 ms
	. 1 s	882 ms		936 ms
	2 s	1.77 s		1.87 s
	5 s	4.41 s		4.68 s
j	. 10 s	8.82 s		9.36 s
	20 s	17.7 s		18.7 s
	50 s	44.1 s		46.3 s
ļ	100 s	88.2 s		93.6 s
20	Calibration Amplitude Accuracy			
		−10.3 dBm		−9.7 dBm

MEMO Ø

5.1. Measurement Standards and Support Test Equipment Performance Requirements

5. **ADJUSTMENT**

Measurement Standards and Support Test Equipment Performance 5.1 Requirements

The Minimum Use Specifications (MUS) are the calculated minimum performance specifications criteria needed for the Measurement Standards (MS) and support M&TE to be used for comparison measurement required in the Adjustment Procedure (AP) process.

The MUS is developed through uncertainty analysis and is calculated through assignment of a defined and documented uncertainty/accuracy ratio or margin between the specified tolerances of the UUT and the capability (uncertainty specifications) required of the measurement standards system. The MUS is required to assist a measurement specialist in the evaluation of existing or selected alternate measurement standards equipment.

MS and SM&TE environmental range: Temperature:

18 to 28°C

Relative humidity:

30 to 70%

MS and SM&TE warmup/stabilization period requirements:

60 minutes

Table 5-1 Measurement Standards (MS) Performance Requirements (1 of 2)

Equipment Generic Name (Quantity)	Minimum Use Specifications (MUS)	Manufacturer/Model /Option Applicable
Frequency standard	Output frequency: 10 MHz Stability: 5×10-10/day Output impedance: Approx. 50 Ω Output voltage: 1 Vp-p or more	TR3110
Synthesized sweeper	Frequency range: 10 to 18 MHz Frequency accuracy (CW): 3×10-8/day Power level range: -15 to +15 dBm	TR4515
Frequency synthesizer	Frequency range: 1 to 20 MHz Stability: 5×10-6/year Power level range: -10 to +13 dBm	HP 3325

Table 5-1 Measurement Standards (MS) Performance Requirements (2 of 2)

cable
<u> </u>
595A

5.1. Measurement Standards and Support Test Equipment Performance Requirements

Table 5-2 Support Measuring & Test Equipment (M&TE) Performance Requirements

Equipment Generic Name (Quantity)	Minimum Use Specifications (MUS)	Manufacturer /Model/Option Applicable
Adapter	Type N (male) to BNC (female)	JUG -201A/U (Hirose)
Adapter	Type N (male) to SMA (female)	HRM-554S
Adapter	SMA (male) to SMA (male)	50-673-0000-31 (Selectro)
Adapter	Type N (female) to BNC (male)	NJ-BNCP (DDK)
Adapter	SMA (female) to SMA (female)	HRM-501 (Hirose)
20 dB fixed attenuator	Connector: SMA (male), SMA (female)	AT-120 (Hirose)
Low-pass filter	Cutoff frequency: 2.2 GHz Rejection at 3 GHz: >40 dB Rejection at 3.8 GHz: >80 dB	DEE-001172-1 (Advantest)
Double balanced mixer	Frequency range: 10 to 100 MHz	
Cable	Frequency range: DC to 26.5 GHz Maximum SWR: <1.45 at 26.5 GHz Length: Approx. 70 cm Connector: SMA (male) at both ends	A01002
Cable	Length: 150 cm Connection: BNC (male) at both ends	MI-09
Cable	Length: 10 cm Connection: BNC (male) at both ends	MC-61
Cable	Frequency: 21.4 MHz Length: 100 cm Connector: UM (male), BNC (male)	MC-36A
Probe	Frequency: 21.4 MHz 10:1 Impedance: 10 MHz	P6133 (Tektronix)

5.2 Preliminary Operations

5.2 Preliminary Operations

				_
W.	Δ⊏	≀N!	M	(=

Always make sure that the power cord of the spectrum analyzer is plugged into a three-hole grounded outlet or two-hole outlet with the grounded adapter. You can be fatally shocked if you fail to follow this rule.

Do not touch live circuits when adjusting an instrument.

- (1) Always confirm that the POWER switch is OFF before connecting the power cord to the AC line.
- (2) Before performing any adjustment, allow the instrument to warm up for five minutes.

5.3 Adjustment

5.3 Adjustment

5.3.1 A/D Adjustment

- ASSEMBLY ADJUSTMENT Log block (WBL-32xxLOG)
- RELATED PORFORMANCE TEST
 There is no related porformance test.

DESCRIPTION

The A/D adjustment including offset and gain adjustment of the positive peak detector, negative peak detector, sample mode, FFT mode, and high-speed mode can be made by changing the DAC data and variable resistance. Also, the reference voltage and slope detector can be adjusted by changing the variable resistance.

[Reference Voltage Adjustment]

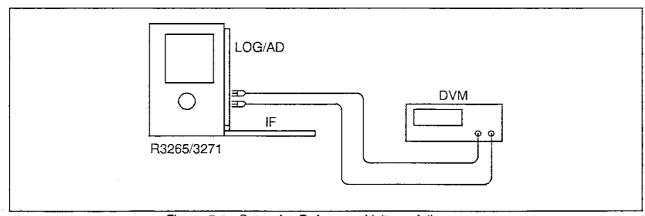


Figure 5-1 Setup for Reference Voltage Adjustment

EQUIPMENT

DVM	 TR6851
Probe	 P6133

• PROCEDURE

(1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Place the system in the side angle, remove the interface block screws, and open the interface block. Also, remove the top cover (MBS-72887) from the A/D section.

Plug the power cord, and turn the POWER switch on.

(2) Connect the DVM probe between TP1 (GND) and TP3 (REF), and adjust R157 to have +2.000 ±1 mV.

[Adjusting the positive peak detector, negative peak detector, sample mode, FFT mode, and high-speed mode]

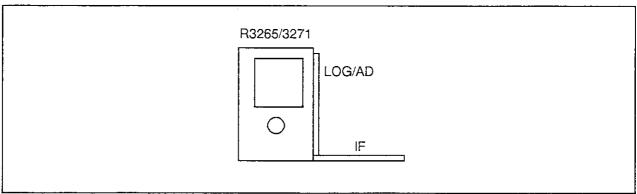
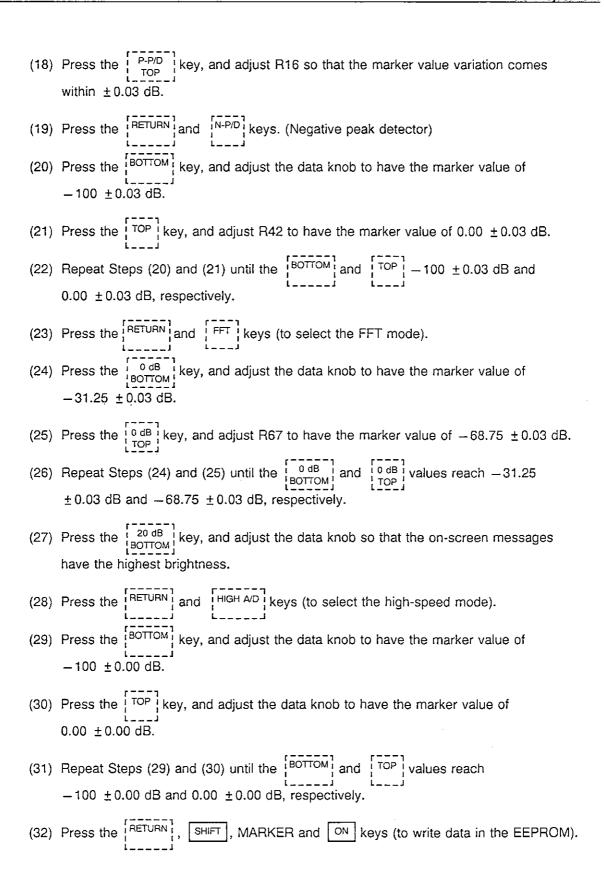


Figure 5-2 Adjustment Setup

• PROCEDURE

(1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Place the system in the side angle, remove the interface block screws, and open the interface block. Also, remove the top cover (MBS-72887) from the A/D section.


Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.

(2) Press the PRESET key of the R3265/3271, and press the MARKER ON key.

1. C. C. C. C. C. C.

(3)	Hold down the SHIFT key and press the 5 key on the R3265/3271.
	When the "Please input password!!" message appears, press [9], [4], [2], [8] and
	4 keys in this sequence.
(4)	Hold down the SHIFT key and press the REF LEVEL key.
(5)	Press the $\begin{bmatrix} A/D \end{bmatrix}$ and $\begin{bmatrix} X3.52 \\ AMP \end{bmatrix}$ keys (to select the Sample mode).
(6)	Press the [BOTTOM] key and adjust the data knob to have the marker value of -100.00 ± 0.03 dB.
(7)	Press the $\begin{bmatrix} \\ TOP \end{bmatrix}$ key and adjust R84 to have the marker value of 0.00 \pm 0.03 dB.
(8)	Repeat Steps (6) and (7) until the BOTTOM and TOP values reach - 100 ± 0.03 dB
	and 0.00 ± 0.03 dB, respectively.
(9)	Press the RETURN and POSI-NEGA keys (to select the Positive-Negative mode).
(10)	Press the P-N1 key, and adjust the data knob to have the marker value of
	$-100 \pm 0.03 \text{ dB}.$
	Press the P-N1 key, and adjust R11 to have the marker value of 0.00 ± 0.03 dB.
(12)	Repeat Steps (10) and (11) until the P-N1 and P-N1 values reach - 100
	± 0.03 dB and 0.00 ± 0.03 dB, respectively.
(13)	Press the P-N2 key, and adjust the data knob to have the marker value of
	-100 ±0.03 dB.
	Press the RETURN and P-P/D keys. (Positive peak detector)
(15)	Press the P-P/D1 key, and adjust the data knob to have the marker value of
	$-100 \pm 0.03 \text{ dB}.$
(16)	Press the P-P/D2 key, and adjust the data knob to have the marker value of
	$-100 \pm 0.03 \text{ dB}.$
(17)	As the P-P/D1 and P-P/D2 data are displayed alternately, repeat Steps (15) and
	(16) until the two lines become a single line.

5-7

5-8

[Slope Detector Adjustment]

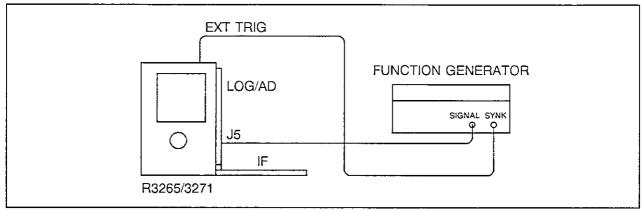


Figure 5-3 Setup for Slope Detector Adjustment

•	Ε(าเ	JIР	М	E١	ĮΤ

Function generator		HP3325A		
Cable		MI-09: BNC (male)	150 cm long	

- (1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Place the system in the side angle, remove the interface block screws, and open the interface block.
 - Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.
- (2) Connect the BNC cable between the EXT TRIG terminal and SYNC OUT terminal of the HP3325A on the R3265/3271 rear panel.
- (3) Connect the signal cable between J5 of the AD block and SIGNAL terminal of HP3325A.

TRIG EXT

(5) Hold down the SHIFT key and press the key of the R3265/3271 to select

the Debug mode. Then, press the following keys in this sequence.

3 1 5 0 0 0 ENTER 1 2 ENTER

Press the RETURN key to exit the Debug mode.

5.3 Adjustment

(6)	Set the HP3325A as follows:	
	FREQ	50 Hz (SINE)
	AMPTD	900 mV
	DC OFFSET	500 mV

(7) Adjust R111 so that the smooth waveforms are displayed on the screen.

5 - 10


5.3.2 Log Amp Adjustment

- ASSEMBLY ADJUSTMENT Log block (WBL-32xxLOG)
- RELATED PERFORMANCE TEST Scale fidelity

DESCRIPTION

The Log Amp can be adjusted for 21.4 MHz BPF by changing the coil and variable resistor values. The LOG/LIN GAIN, OFFSET, MAG AMP, STEP AMP, and QP DET values can be adjusted by changing the DAC data.

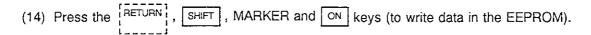
[21.4 MHz BPF Adjustment]

Figire 5-4 21.4 MHz B.P.F. Adjustment Setup

EQUIPMENT

• PROCEDURE

- (1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Place the system in the side angle, remove the interface block screws, and open the interface block.
 - Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.
- (2) Connect the signal cable between J8 of the LOG block and the TG OUT terminal of R3361. Also, connect the cable between J9 of the LOG block and the INPUT terminal of R3361.


(3)	Press the PRESET key of the R3265/3271, and set the	controls as follows:
	CENTER FREQ	0 MHz
	FREQ SPAN	10 MHz
	VBW	1 kHz
(4)	Press the PRESET and TG keys of R3361B, and set	the controls as follows:
	CENTER FREQ	21.42 MHz
	FREQ SPAN	5 MHz
	TG LEVEL	-10 dBm
	dB/DIV	1 dB/DIV
	BK SP	
(5)	Hold down the SHIFT key and press the key	of the R3265/3271 to select
	the Debug mode. Then, press the following keys in the	nis sequence.
	4 1 0 2 7 0 ENTER 0 7 ENTER	
(6)	Adjust L14 so that the peak of waveforms comes at	the center of the screen on the
	R3361B.	
(7)	Press the following keys in this sequence on the R326	65/3271:
	4 1 0 2 7 0 ENTER 2 7 ENTER	
(8)	Press the B WRITE , and VIEW keys on the R336	S1 to store the waveforms.
(9)	Press the following keys in this sequence on the R326	
(0)	4 1 0 2 7 0 ENTER 0 7 ENTER	
(10)	Adjust R239 so that the peak of the waveforms on the	e R3361B reaches the same level
	as that stored in B	
(11)	Repeat Steps (7) to (10) so that they have the same i	evel.

5.3 Adjustment

[MAG AMP Adjustment]

• PROCEDURE

(1)	Turn on the POWER switch of the R3265/3271 and warm up it 30 minutes or more.
(2)	Press the PRESET key of the R3265/3271 and set the controls as follows: CENTER FREQ 0 MHz FREQ SPAN 10 kHz VBW 1 kHz MARKER 0N
(3)	Hold down the SHIFT key and press the 5 key on the R3265/3271. When the "Please input password!!" message appears, press the 9, 4, 2, 8 and 4 keys in this sequence.
(4)	Hold down the SHIFT key and press the PEF LEVEL key.
(5)	Press the LOG and MAG keys.
(6)	Press the MAG key, and adjust the data knob to have the marker value of 100.00 dBm ± 0.2 dB.
(7)	Press the $\begin{bmatrix} MAG \\ 10/5 \text{ dB.B} \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm ± 0.2 dB.
(8)	Press the LIN key and enter the same value as the MAG 5dB.A data.
(9)	Press the $\begin{bmatrix} LIN \\ \times 1, \times 2.B \end{bmatrix}$ key and enter the same value as the MAG 5dB.A data.
(10)	Press the NEXT and MAG key, and adjust the data knob to have the marker value of -100.00 dBm ±0.2 dB.
(11)	Press the $\begin{bmatrix} MAG \\ 2 & dB.B \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm ± 0.2 dB.
(12)	Press the $\begin{bmatrix} MAG \\ 1 \text{ dB.A} \end{bmatrix}$ key, and adjust the data knob to have the marker value of $-100.00 \text{ dBm } \pm 0.2 \text{ dB.}$
(13)	Press the $\begin{bmatrix} MAG \\ 1 & dB.B \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm ± 0.2 dB.

[LOG/LIN GAIN, OFFSET, STEP AMP, and QP Adjustment]

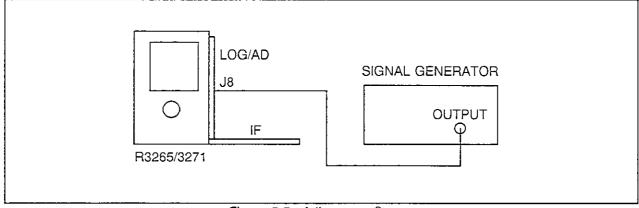
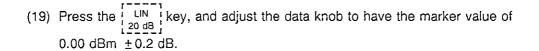


Figure 5-5 Adjustment Setup

EQUIPMENT

 Signal generator
 R4262


 Cable
 MI-09; BCN (male), 150 cm long

PROCEDURE

- (1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Place the system in the side angle, remove the interface block screws, and open the interface block.
 - Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.
- (2) Connect the signal cable between J8 of the LOG block and the OUTPUT terminal of R4262.
- (3) Set the R4262 as follows:

FREQ 21.42 MHz

(4)	Press the PRESET key of the R3265/3271, and set the controls as follows: CENTER FREQ 0 MHz FREQ SPAN 10 MHz VBW 1 kHz MARKER 0N
(5)	Hold down the SHIFT key and press the 5 key on the R3265/3271. When the "Please input password!!" message appears, press the 9, 4, 2, 8 and 4 keys in this sequence.
(6)	Hold down the SHIFT key and press the REF LEVEL key.
(7)	Press the LOG key.
(8)	Set the AMPLITUDE of R4262 to 0 dBm.
(9)	Press the $\begin{bmatrix} GAIN \\ ADJ \end{bmatrix}$ and $\begin{bmatrix} LOG \\ LOG \end{bmatrix}$ keys, and adjust the data knob to have the marker value of 0.00 dBm ± 0.2 dB.
(10)	Set the AMPLITUDE of R4262 to -90 dBm.
(11)	Press the RETURN and LOG keys, and adjust the data knob to have the marker value of $-90.00 \text{ dBm} \pm 0.2 \text{ dB}$.
(12)	Repeat Steps (12) to (15) so that the $\begin{bmatrix} LOG \\ OFFSET \end{bmatrix}$ values become 0.00 dBm \pm 0.2 dB and $-$ 90.00 dBm \pm 0.2 dB, respectively.
(13)	Press the [RETURN], [GAIN], [LIN] keys in this sequence.
(14)	Set the AMPLITUDE of R4262 to 0 dBm.
(15)	Adjust the data knob to have the marker value of 0.00 dBm \pm 0.2 dB.
(16)	Set the AMPLITUDE of R4262 to -10 dBm.
(17)	Press the $\begin{bmatrix} -1 & 1 \\ 10 & dB \\ 10 & dB \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm \pm 0.2 dB.
(18)	Set the AMPLITUDE of R4262 to -20 dBm.

- (20) Set the AMPLITUDE of R4262 to -30 dBm.
- (21) Press the $\begin{bmatrix} LIN \\ 30 & dB \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm \pm 0.2 dB.
- (22) Set the AMPLITUDE of R4262 to -40 dBm.
- (23) Press the NEXT and LIN keys, and adjust the data knob to have the marker value of 0.00 dBm ± 0.2 dB.
- (24) Set the AMPLITUDE of R4262 to -50 dBm.
- (25) Press the $\begin{bmatrix} LIN \\ \frac{50 \text{ dB}}{20 \text{ dB}} \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm ± 0.2 dB.
- (26) Set the AMPLITUDE of R4262 to -60 dBm.
- (27) Press the $\begin{bmatrix} LIN \\ 60 & dB \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm \pm 0.2 dB.
- (28) Set the AMPLITUDE of R4262 to -70 dBm.
- (29) Press the $\begin{bmatrix} LIN \\ 70 & dB \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm \pm 0.2 dB.
- (30) Set the AMPLITUDE of R4262 to -80 dBm.
- (31) Press the $\begin{bmatrix} LIN \\ 80 \text{ dB} \end{bmatrix}$ key, and adjust the data knob to have the marker value of 0.00 dBm ± 1 dB.
- (32) Press the RETURN, MARKER and ON keys (to write data in the EEPROM).
- (33) Press the QP, QP ZERO, QP GAIN and QP Keys in this sequence.

5 - 16

- (34) Set the AMPLITUDE of R4262 to 0 dBm.
- (35) Adjust the data knob to have the marker value of 0.00 dBm ±0.2 dB.

- (36) Set the AMPLITUDE of R4262 to -20 dBm.
- (37) Press the $\begin{bmatrix} QP \text{ GAIN} \\ -ADJ \end{bmatrix}$ key, and adjust the data knob to have the marker value of $-40.00 \text{ dBm } \pm 0.5 \text{ dB}$.
- (38) Set the AMPLITUDE of R4262 to -40 dBm.
- (39) Press the QP ZERO key, and adjust the data knob to have the marker value of -80.00 dBm ± 0.5 dB.
- (40) Repeat Steps (36) to (41) so that the OFFSET , OFFSET and OFF
- (41) Press the RETURN, MARKER and ON keys (to write data in the EEPROM)
- (42) Set the AMPLITUDE of R4262 to 0 dBm.
- (43) Press the STEP AMP and OFF keys, and record the marker value.
- (44) Set the AMPLITUDE of R4262 to -10 dBm.
- (45) Press the [STEP] key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by -10 dBm ±0.2 dB.
- (46) Set the AMPLITUDE of R4262 to -20 dBm.
- (47) Press the [STEP] key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by -20 dBm ±0.2 dB.
- (48) Set the AMPLITUDE of R4262 to -30 dBm.
- (49) Press the [STEP] key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by -30 dBm ± 0.2 dB.
- (50) Set the AMPLITUDE of R4262 to -40 dBm.
- (51) Press the $\begin{bmatrix} STEP \\ 40 & dB \end{bmatrix}$ key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by $-40 \text{ dBm } \pm 0.2 \text{ dB}$.
- (52) Set the AMPLITUDE of R4262 to -50 dBm.

- (53) Press the $\begin{bmatrix} NEXT \\ MENU \end{bmatrix}$, $\begin{bmatrix} STEP \\ 50 \text{ dB} \end{bmatrix}$ keys, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by $-50 \text{ dBm } \pm 0.2 \text{ dB}$.
- (54) Set the AMPLITUDE of R4262 to -60 dBm.
- (55) Press the $\begin{bmatrix} \text{STEP} \\ \text{60 dB} \end{bmatrix}$ key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by $-60 \text{ dBm } \pm 0.2 \text{ dB}$.
- (56) Set the AMPLITUDE of R4262 to -70 dBm.
- (57) Press the $\begin{bmatrix} \text{STEP} \\ 70 & \text{dB} \end{bmatrix}$ key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by $-70 \text{ dBm } \pm 0.2 \text{ dB}$.
- (58) Set the AMPLITUDE of R4262 to -80 dBm.
- (59) Press the [STEP] key, and adjust the data knob so that the marker value reaches the value recorded in Step (47) subtracted by -80 dBm ±0.2 dB.
- (60) Press the RETURN, MARKER and ON keys (to write data in the EEPROM).

5.3.3 IF Filter Adjustment

ASSEMBLY ADJUSTED IF block (WBL-32xxIF)

RELATED PERFORMANCE TEST Resolution bandwidth accuracy and selectivity

DESCRIPTION

The IF filter consists of the 4-stage band-pass filter of the LC and the 8-stage band-pass filter of the resonator (4-stage lithium tantalum and 4-stage crystal filters). The IF filter can easily be adjusted by observing the filter waveforms on the spectrum analyzer having the TG.

[LC Filter Adjustment]

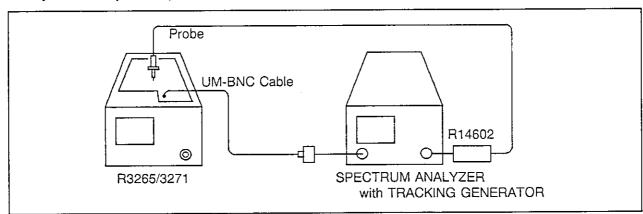


Figure 5-6 LC Filter Adjustment Setup

EQUIPMENT

 Spectrum analyzer with TG
 R3361A/B

 Impedance converter
 R14602

 Probe
 P6133

 Adapter:
 Type N (male) to BNC (female)
 JUG-201A/U

 Cable:
 UM-BNC, 100 cm long
 MC-36A

• PROCEDURE

(1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Then, remove the top cover from the interface block (WBL-32xxIF).
Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.

(2)	Connect the UM-BNC cable (and N-BN	C conversion	adapter)	between J	11 of the	IF
	block and TG OUTPUT of the R3361.	Connect the	probe to	the INPUT	terminal	of
	R3361 using the R14602 impedance conv	erter.				

(3) Press the RESET key of the R3361 and set the controls as follow	(3)	Press the	RESET	key of the R3361 and set the controls as fo	ollows
---	-----	-----------	-------	---	--------

CENTER FREQ	21.4205 MHz
SPAN	1 MHz
REF. LEVEL	– 15 dBm
SCALE	1 dB/div
TG LEVEL	10 dBm

- (4) Press the RESET key of the R3265/3271, hold down the SHIFT key and press 7 key to set the CAL CORR switch to OFF.

 Then, press the CPL and RBW keys to set the RBW to 300 kHz.
- (5) Connect the probe connected to the R3361 to TP16 of the IF block.
- (6) Adjust L62 so that the peak of waveforms reaches the center of the screen on the R3361.
- (7) Connect the probe to TP17, and adjust L64 in the same way as for Step (6).
- (8) Connect the probe to TP18, and adjust L68 in the same way as for Step (6).
- (9) Connect the UM-BNC cable (and N-BNC conversion adapter) between J5 of the IF block and the INPUT terminal of the R3361.
- (10) Set the REF LEVEL of the R3361 to 0 dBm.
- (11) Adjust L70 in the same way as for Step (6).

[Resonator Filter Adjustment]

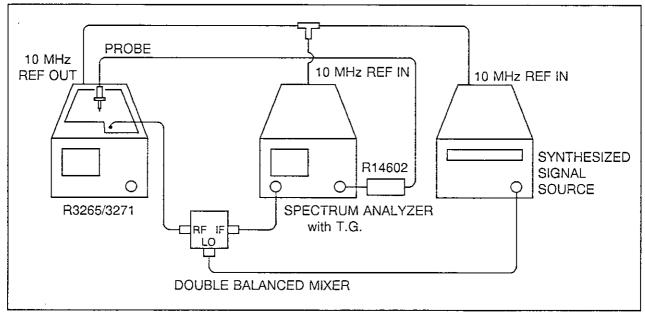


Figure 5-7 Resonator Filter Adjustment Setup

EQUIPMENT

Spectrum analyzer with TG	R3361A/B
Synthesized signal source	TR4515
Double balanced mixer	Frequency range: 10 to 100 MHz
Probe	P6133
Cable	MI-09; BNC (male), 150 cm long
Impedance converter	R14602
Coaxial cable and others for mixer connection	

PROCEDURE

Adjustment of lithium tantalum filter:

- (1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Then, remove the top cover from the interface (IF) block. Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.
- (2) Connect the BNC cables between the 10 MHz REF IN/OUT terminal of R3265/3271, 10 MHz REF terminal of R3361, and the EXT 10 MHz terminal of TR4515. Also, connect the TG of R3361 to the IF port of the double balanced mixer. Connect the OUTPUT terminal of TR4515 to the LO port of the double balanced mixer. Connect the J1 terminal of IF block of the R3265/3271 to the RF port of the double balanced mixer. Connect the probe to the INPUT terminal of R3361 using the R14602 impedance converter.

		CAL
(3)	Press the PRESET key of the R3265/3271, hold down	the SHIFT key and press 7
	key to set the CAL CORR to OFF.	
	Also, press the PRESET key of the R3361, and set the	e controls as follows:
	CENTER FREQ	3.5795 MHz
	SPAN	0 Hz
	REF. LEVEL	_25 dBm
	SCALE	1 dB/div
	TG LEVEL	10 dBm 100 Hz
	RBW	EXT IN
	Press the PRESET key of the TR4515, and set the co	ontrols as follows:
	CW FREQ	25 MHz
	LEVEL	+ 10 dBm
	10 MHz REF	EXT IN
(4)	Press the CPL and RBW keys of the R3265/3271 to set the RBW to 3 kHz.	
(5)	Connect the prove from R3361 to TP6.	
(6)	Adjust C43 of the IF block to have the highest display level of R3361.	
(7)	Adjust C57 in the same way as for Step (6).	
(8)	Repeat Steps (6) and (7) to have the highest display level of R3361.	
(9)	Connect the probe to TP11.	
(10)	10) Adjust C110 of the IF block to have the highest display level of R3361.	
(11)	11) Adjust C123 in the same way as for Step (10).	
(12)	(12) Repeat Steps (10) and (11) to have the highest display level of R3361.	
(13)	Set the SPAN of R3361 to 500 kHz, and set RBW to	AUTO.
(14)	Set the RBW of R3265/3271 to 100 kHz.	
(15)	Connect the probe to TP5.	

- (16) Set the R3361 to 10 dB/div, and adjust C41 so that the right and left sides of waveforms have the same signal level on the screen.
- (17) Set the R3361 to 1 dB/div, and adjust L18 so that the peak of the waveforms comes to the center of the screen.
- (18) Connect the probe to TP6, and adjust C55 in the same way as for Step (16). Also, adjust L22 in the same way as for Step (17).
- (19) Connect the probe to TP10, and adjust C108 in the same way as for Step (16). Also, adjust L36 in the same way as for Step (17).
- (20) Connect the probe to TP11, and adjust C121 in the same way as for Step (16). Also, adjust L40 in the same way as for Step (17).

[Crystal Filter Adjustment]

- (1) Perform Steps (1) to (3) of the lithium tantalum filter adjustment.
- (2) Set the RBW of R3265/3271 to 10 Hz.
- (3) Connect the probe to TP8.
- (4) Adjust C75 to have the highest display level of R3361.
- (5) Adjust C85 in the same way as for Step (4).
- (6) Repeat Steps (4) and (5) to have the highest display level of R3361.
- (7) Connect the probe to TP13.
- (8) Adjust C137 and C149 in the same way as for Steps (4) to (6).
- (9) Set the RBW of R3265/3271 to 1 kHz.
- (10) Connect the probe to TP7.
- (11) Set the SPAN of R3361 to 2 kHz, and set its SCALE to 10 dB/div. Also, adjust C71 so that the right and left sides of waveforms have the same signal level on the screen.
- (12) Set the SPAN of R3361 to 2 kHz, and set its SCALE to 1 dB/div. Also, adjust L26 so that the peak of waveforms comes to the center of the screen.
- (13) Connect the prove to TP8, and adjust C83 in the same way as for Step (11). Also, adjust L30 in the same way as for Step (12).
- (14) Connect the probe to TP12, and adjust C135 in the same way as for Step (11). Also, adjust L44 in the same way as for Step (12).
- (15) Connect the probe to TP13, and adjust C147 in the same way as for Step (11). Also, adjust L48 in the same way as for Step (12).

5.3.4 IF Step Amp Adjustment

- ASSEMBLY ADJUSTED IF block (WBL-32xxIF)
- RELATED PERFORMANCE TEST
 IF gain uncertainty test

DESCRIPTION

The IF step amp consists of two 10dB amps and four 20dB amps. In addition, it contains the 10dB amp that is used for the R3265 in the Low Noise mode. These amplifier gains can be adjusted using the variable resistors. If the amp has the 10dB gain, it must be adjusted so that its output level matches the original one when the CAL Signal Level is reduced for 10 dB. Also, if the amp has the 20dB gain, it must be adjusted so that the output level matches the original one when the CAL Signal Level is reduced for 20 dB.

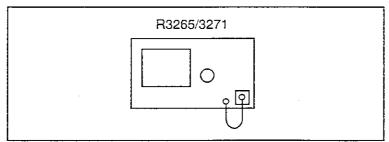


Figure 5-8 IF Step Amp Adjustment

• EQUIPMENT

Cable	MC-61; BNC (male), 10 cm long
Adapter	JUG-201A/U; type N (male) to BNC
	(female)

PROCEDURE

- (1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.
- (2) Connect the BNC cable (using the N-BNC conversion adapter) between the CAL OUT and INPUT terminals of the R3265/3271.

5 - 25

(3)	Press the PRESET key of the R3265/3271, and set the controls as follows:		
	CENTER FREQ 25 MHz SPAN 0 Hz REF. LEVEL -5 dBm SCALE 1 dB/div RBW 100 kHz		
(4)	Make sure that approximately -10 dBm of signals are displayed on the screen.		
	Then, press the following keys in this sequence. B, [WRITE][VIEW] MARKER ON, [NEXT], [DSP POSI], [PREV], [MKR], [A MKR],		
(5)	Hold down the SHIFT key and press the 7 and CAL SIG LEVEL keys to set to the CAL LEVEL to -20 dBm.		
(6)	Hold down the SHIFT key and press the key to select the DEBUG mode. Then, press the following keys in this sequence.		
(7)	Adjust R122 so that the \triangle MARKER value enters within \pm 0.1 dB.		
(8) (9)	Press the following keys in this sequence. 4 2 0 0 2 0 ENTER 3 F ENTER 4 2 0 0 2 2 ENTER 1 ENTER Adjust R144 in the same way as for Step (7).		
(10)	Press the following keys in this sequence. 4 2 0 0 2 2 ENTER 2 ENTER 4 2 0 0 0 4 ENTER 1 1 ENTER		
(11)	Adjust R338 in the same way as for Step (7)		
(12)	Press the following keys in this sequence. 4 2 0 0 4 ENTER 1 ENTER RETURN		
(13)	Set the CAL LEVEL to -30 dBm.		
(14)	Hold down the SHIFT key and press the key to select the DEBUG mode.		
(15)	Press the following keys in this sequence. 4 2 0 0 2 0 ENTER 3 B ENTER		

(16	Adjust R114 in the same way as for Step (7).
(17	Press the following keys in this sequence.
	4 2 0 0 2 0 ENTER 3 7 ENTER
(18	Adjust R120 in the same way as for Step (7).
(19	Press the following keys in this sequence.
	4 2 0 0 2 0 ENTER 2 F ENTER

- (20) Adjust R128 in the same way as for Step (7).
- (21) Press the following keys in this sequence.

 4 2 0 0 2 0 ENTER 1 F ENTER
- (22) Adjust R134 in the same way as for Step (7).
- (23) Press the following keys in this sequence.

 4 2 0 0 2 0 ENTER 3 F ENTER RETURN

5.3.5 28.6 MHz Rejection Circuit Adjustment

- ASSEMBLY ADJUSTMENT IF block (WBL-32xxiF)
- RELATED PERFORMANCE TEST
 There is no related performance test.

DESCRIPTION

When the interface (IF) frequency of the IF block is converted from 21.4205 MHz to 3.5795 MHz, a \pm 7.159 MHz spurious is generated. The 28.5795 MHz frequency rejection circuit is provided to suppress the spurious generation. The circuit must be adjusted so that the 32.159 MHz spurious is reduced to \pm 100 dBc when the 25 MHz CAL signals are entered in the INPUT terminal of R3265/3271.

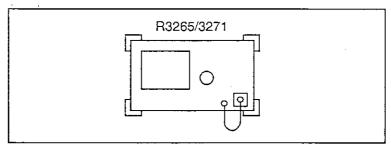


Figure 5-9 28.6 MHz Rejection Circuit Adjustment

EQUIPMENT

Cable	MC-61; BNC (male), 10 cm long
Adapter	JUG-201A/U; type N (male) to BNC
	(female)

PROCEDURE

(1) Turn off the POWER switch of the R3265/3271, unplug the power cord, and remove the system cover. Plug the power cord, turn the POWER switch on, and warm up the system 30 minutes or more.

5.3 Adjustment

(2)	Connect the BNC cable (using the N-BNC conversion adapter) between the CAL OU	7
	and INPUT terminals of the R3265/3271.	

(3) Press the RESET key of the R3265/3271, and set the controls as follows:

CENTER FREQ	25 MHz
SPAN	500 Hz
REF. LEVEL	0 dBm
RBW	30 kHz
DIGITAL IF	OFF

- (4) Press the RESET, $MKR \rightarrow REF$ keys in this sequence on the R3265/3271.
- (5) Set the CENTER FREQ of the R3265/3271 to 32.159 MHz.

 Then, reduce the PEF LEVEL 50 dB below the current setup.
- (6) Press the CPL and ATT keys of R3265/3271 to set the Input Attenuator to 0 dB.
- (7) Adjust C5 to have the minimum signal level on the screen.
- (8) Adjust C6 in the same way as for Step (7).
- (9) Adjust C400 in the same way as for Step (7).
- (10) Repeat Steps (7) to (9) until the signal level drops below the center scale position of the screen.

5.3.6 YTO Adjustment

- ASSEMBLY ADJUSTMENT RF I/O assembly (BLL-017508x01/x02)
- RELATED PERFORMANCE TEST Frequency span accuracy

DESCRIPTION

Enter the 3.5GHz frequency signals and set the center frequency to 0 Hz. Set the YTO offset of the center frequency to 3.5 GHz, and adjust the YTO gain. The adjustment can be made by changing data of the RF I/O DAC. The first local PLL must be turned off.

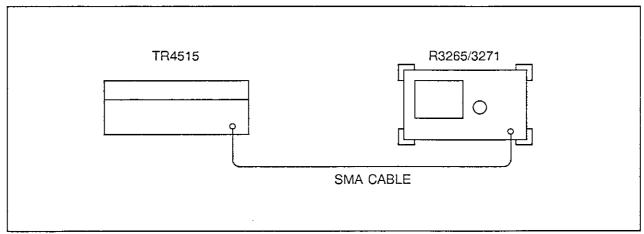


Figure 5-10 YTO Adjustment Setup

EQUIPMENT

 Synthesized sweeper
 TR4515

 Cable
 A01002; SMA (male), 70 cm long

PROCEDURE

- (1) Connect the equipment as illustrated in Figure 5-10.
- (2) Press the INSTR PRESET key on the TR4515 and set the controls as follows:

5 - 30

5.3 Adjustment

(3)	Press the RESET key on the R3265/3271 and set the controls as follows:
	CENTER FREQ 0 Hz
	SPAN 100 MHz
(4)	Hold down the SHIFT key and press the 5 key on the R3265/3271.
	When the "Please input password!!" message appears, press keys 9, 4, 2, 8
	and 4 in this sequence.
(5)	Press the TUNE and ON/OFF keys.
(6)	Press the OMHZ key and adjust the data knob so that the local-feed-through
	$i_{-}^{ADJ}_{-}i$ locates within the center scale position ± 0.5 div.
(7)	Press the CENTER, 3, , 5 and GHz keys in this sequence.
(8)	Press the 3.5 MHZ ADJ key and adjust the data knob so that the signal locates within
	the center scale position ±0.5 div.
(9)	Press the SPAN, 1, 0 and MHz keys in this sequence.
(10)	Press the 3.5 MHZ key and adjust the data knob so that the signal locates within
	the center scale position ±0.5 div.
(11)	Press the CENTER, o and MHz keys in this sequence.
(12)	Press the OMHZ key and adjust the data knob so that the local-feed-through
, ,	i_{-} ADJ_j locates within the center scale position ± 0.5 div.
(13)	Repeat Steps (10) to (12) so that the 0 MHz and 3.5GHz signals locate within
	the center scale position ±1 div.
[Data W	riting in EEPROM]
(14)	Hold down the SHIFT key and press the MARKER ON key on the R3265/3271,
	and wait for approximately 10 seconds. Data writing in the EEPROM will complete.
(15)	Press the PLL ON/OFF and RETURN keys in this sequence.

5-31 Oct 28/91

5.3.7 YTF Adjustment

- ASSEMBLY ADJUSTMENT RF I/O assembly (BLL-017508x01/x02)
- RELATED PERFORMANCE TEST Image, multiple and out-of-band response Second harmonic distortion Frequency response

DESCRIPTION

The gain and offset of YTF tuning voltage are set by DACs on the RF I/O assembly. The offset DAC value is optimized at a low frequency and the gain DAC value is optimized at a high frequency of each band.

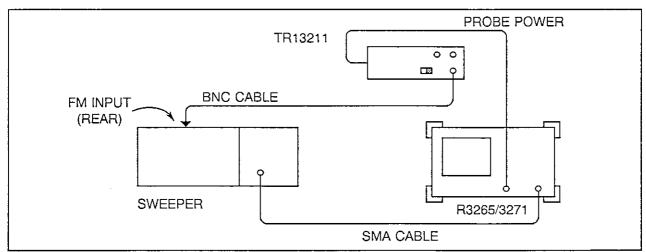


Figure 5-11 YTF Adjustment Setup

EQUIPMENT

 Sweeper:
 HP8350 and HP83595A

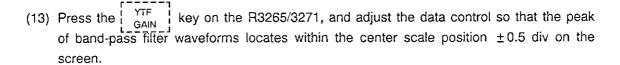
 Sweep adapter:
 TR13211

Cable: A01002; SMA (male), 70 cm long

MI-09; BNC (male), 150 cm long

<u>nt</u>

		5.3 Adjustmer
•	PRC	OCEDURE
	(1)	Connect the equipment as illustrated in Figure 5-11.
	(2)	Press the PRESET key on the HP8350 and set the controls as follows:
		CW 3.7 GHz Power Level –2 dBm
	(3)	Set the TR13211 controls as follows:
		FM FREQ 200 Hz LEVEL Approx. 10 Vpp FM SWITCH: EXT
	(4)	Press the PRESET key on the R3265/3271 and set the controls as follows:
		CENTER FREQ 3.7 HGz RBW: 300 kHz dB/div: 2 dB/div SWEEP TIME: 500 msec SPAN: 0 Hz
	(5)	Hold down the SHIFT key and press the 5 key on the R3265/3271. When the "Please input password!!" message appears, press keys 9, 4, 2, 8 and 4 in this sequence.
	(6)	Press the TUNE and STE SWEEP keys to set YTF SWEEP to "ON".
	[3.5	to 7.5GHz Band]
	(7)	Press the following keys on the R3265/3271:
		BAND 2 Hz SPAN 0 Hz
	(8)	Press the CENTER 3 . 7 and GHz keys in this sequence.
	(9)	Set the cw to 3.7 GHz on the sweeper.


(11) Set the Cw to 7.4 GHz on the sweeper.

the screen.

. 4 and GHz keys on the R3265/3271.

VTF offset key on the R3265/3271, and adjust the data control so that the

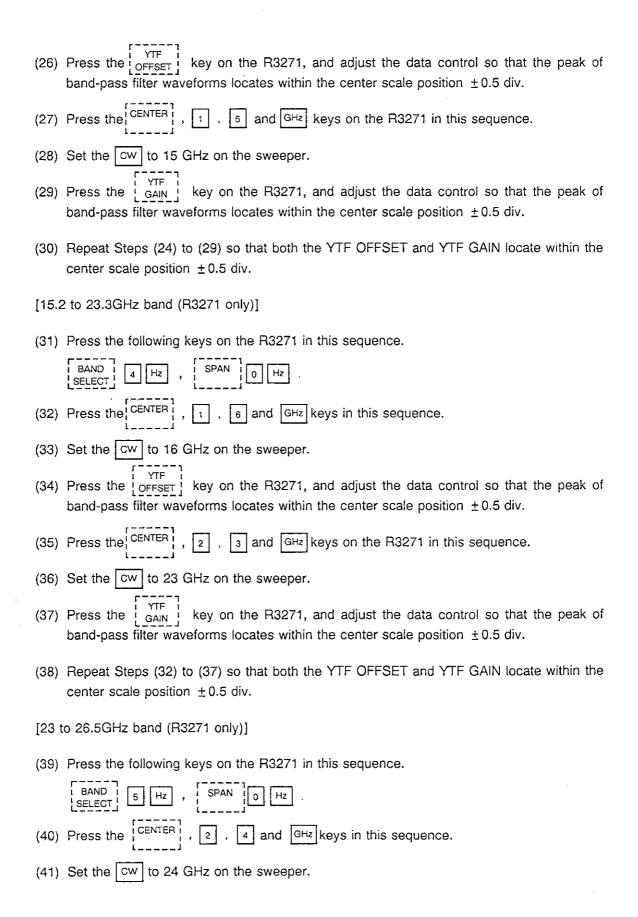
peak of band-pass filter waveforms locates within the center scale position ± 0.5 div on

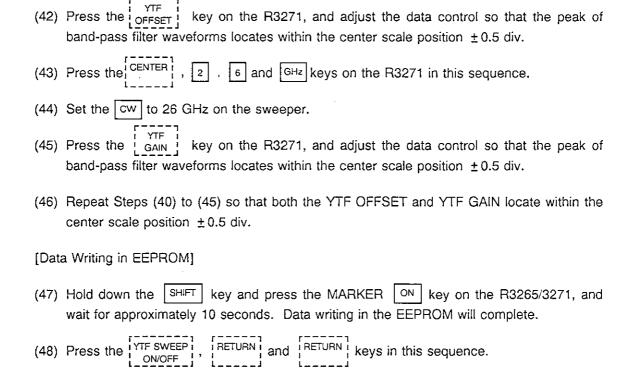
(14) Repeat Steps (8) to (13) so that the YTF OFFSET and YTF GAIN reach within the center scale position = ± 0.5 div.

Caution: Skip Steps (15) to (22) for the R3271. Jump to Step (23).

[7.4 to 8GHz band (R3265 only)]

(15) Press the following keys on the R3265 in this sequence.


- (16) Press the CENTER, 7 . 6 and GHz keys in this sequence.
- (17) Set the Cw to 7.6 GHz on the sweeper.
- (18) Press the OFFSET key on the R3265, and adjust the data control so that the peak of band-pass filter waveforms locates within the center scale position ±0.5 div.
- (19) Press the GENTER, 8 and GHz keys on the R3265 in this sequence.
- (20) Set the CW to 8.3 GHz on the sweeper.
- (21) Press the [YTF | key on the R3265, and adjust the data control so that the peak of band-pass filter waveforms locates within the center scale position ± 0.5 div.
- (22) Repeat Steps (16) to (21) so that both the YTF OFFSET and YTF GAIN locate within the center scale position ±0.5 div.


Caution: Skip Steps (23) to (46) for the R3265. Jump to Step (47).

[7.4 to 15.4GHz band (R3271 only)]

(23) Press the following keys on the R3271 in this sequence.

- (24) Press the CENTER, 8 . 3 and GHz keys in this sequence.
- (25) Set the cw to 7.6 GHz on the sweeper.

Frequency Response Adjustment

ASSEMBLY ADJUSTED RF I/O assembly (BLL-017508x01/x02)

RELATED PERFORMANCE TEST Frequency response Displayed average noise level

DESCRIPTION

Enter the RF signals synchronized with the R3265/3271 sweep signals from the sweeper using the sweep adapter.

Adjust the BAND GAIN and SLOPE GAIN of each band, and adjust the MIXER BIAS for the R3271 band greater than 3.5 GHz. Before the frequency response adjustment, the YTF adjustment has been completed.

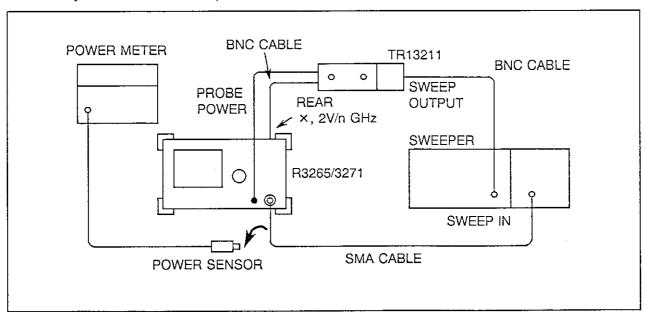


Figure 5-12 Frequency Response Adjustment Setup

EQUIPMENT

Sweeper:	HP8350 and HP83595A
Sweep adapter:	TR13211
Power meter:	HP436A
Power sensor:	HP8485A
Cable:	
A01002;	SMA (male), 70 cm long
Two MI-09's;	BNC (male), 150 cm long

5 - 37

5.3 Adjustment

PROCEDURE

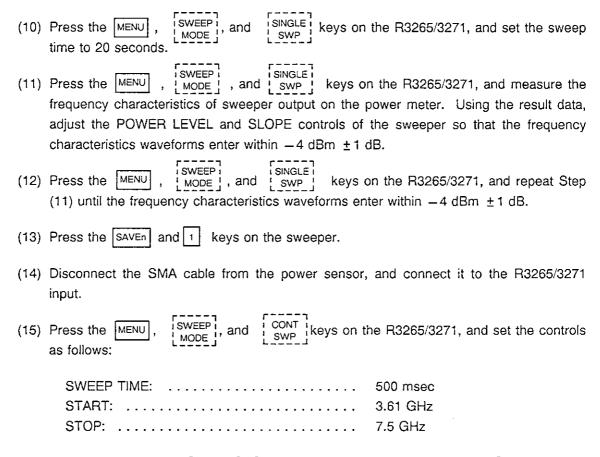
- (1) Zero and calibrate the power meter. Rotate and set the CAL FACTOR control to the 2GHz calibration factor of the power sensor.
- (2) Connect the equipment as illustrated in Figure 5-12.

3) Press the INSTR PRESET	key on the HP8350, and set the control as follows
---------------------------	---

START FREQ: 10 MHz
STOP FREQ: 3.6 GHz
POWER LEVEL: -4 dBm
SWEEP: EXT
SWEEP TRIGGER: EXT

(4) Press the PRESET key on the R3265/3271, and set the controls as follows:

 START:
 0 MHz


 STOP:
 3.6 GHz

 SWEEP TIME:
 500 msec

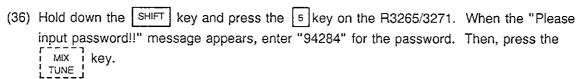
(5) Set the controls of TR13211 as follows:

- (6) Press the START key on the TR13211, and adjust the START control so that the signal overlaps on the left vertical axis of the screen on the R3265/3271.
- (7) Press the STOP key on the TR13211, and adjust the STOP control so that the signal overlaps on the right vertical axis of the screen on the R3265/3271.
- (8) Press the SWEEP key on the TR13211, and fine adjust the START and STOP controls of the TR13211 so that the signals are displayed on the entire R3265/3271 screen from its leftmost end to the rightmost end. (For the TR13211 operations, refer to the TR13211 operation manual.)
- (9) Disconnect the SMA cable from the input terminal of R3265/3271, and connect the power sensor to it.

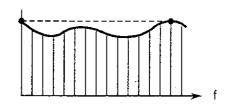
5.3 Adjustment

Rotate and adjust the CAL FACTOR control of the power meter to the 6GHz calibration factor of power sensor.

- (16) Repeat Steps (6) to (12).
- (17) Press the SAVEn and 2 keys of the sweeper.
- (18) Disconnect the SMA cable from the power sensor, and connect it to the R3265/3271 input.


Caution: Skip Steps (19) to (22) for the R3271. Jump to Step (23).

5.3 Adjustment


[R32	265 only]
(19)	Press the MENU, SWEEP, and CONT keys on the R3265, and set the controls as follows:
	SWEEP TIME: 500 msec START: 7.5 GHz STOP: 8.3 GHz
	Rotate and adjust the CAL FACTOR control of the power meter to the 6GHz calibration factor of power sensor.
(20)	Repeat Steps (6) to (12).
(21)	Press the SAVEn and 3 keys of the sweeper.
(22)	Disconnect the SMA cable from the power sensor, and connect it to the R3265/3271 input. Skip Steps (23) to (34), and jump to Step (35).
[R32	271 only]
(23)	Press the MENU, SWEEP, and CONT we keys on the R3271, and set the controls as follows:
	SWEEP TIME: 500 msec START: 7.5 GHz STOP: 15.4 GHz
	Rotate and adjust the CAL FACTOR control of the power meter to the 12GHz calibration factor of power sensor.
(24)	Repeat Steps (6) to (12).
(25)	Press the SAVEn and 3 keys of the sweeper.
(26)	Disconnect the SMA cable from the power sensor, and connect it to the R3271 input.

(27)	Press the MENU, sweep, and cont keys on the R3271, and set the controls as follows:
	SWEEP TIME: 500 msec START: 15.4 GHz STOP: 23.3 GHz
	Rotate and adjust the CAL FACTOR control of the power meter to the 20GHz calibration factor of power sensor.
(28)	Repeat Steps (6) to (12).
(29)	Press the SAVEn and 4 keys of the sweeper.
(30)	Disconnect the SMA cable from the power sensor, and connect it to the R3271 input.
(31)	Press the $MENU$, $SWEEP MODE$, and SWP keys on the R3271, and set the controls as follows:
	SWEEP TIME: 500 msec START: 23.3 GHz STOP: 26.5 GHz
	Rotate and adjust the CAL FACTOR control of the power meter to the 25GHz calibration factor of power sensor.
(32)	Repeat Steps (6) to (12).
(33)	Press the SAVEn and 5 keys of the sweeper.
(34)	Disconnect the cable from the power sensor, and connect it to the R3271 input.
[R32	265/3271]
(35)	Press the MENU, SWEEP, and CONT, and set the controls as follows:
	START: 10 MHz STOP: 3.6 GHz SWEEP TIME: 500 msec dB/div: 2 dB/div DISP LINE -4 dBm

5.3 Adjustment

- (37) Press the BAND select , 1 and Hz keys in this sequence on the R3265/3271.
- (38) Press the RECALL and 1 keys on the sweeper.
- (39) Fine adjust the START and STOP controls of the TR13211 so that the signals continue from the leftmost end to the rightmost end of the R3265/3271 screen.
- (40) Press the [SLOPE] key on the R3265/3271, and adjust the data control so that the peak of lower band of frequency characteristics waveforms almost matches the peak of the higher hand. If the peak level has reached the end of variable range, use this position.

- (41) Press the Legaln key on the R3265/3271, and adjust the data control so that the peak of frequency characteristics waveforms locates within the range of 0 to -1 dB from the DISP LINE.
- (42) Press the following keys in this sequence.

- (43) Press the RECALL and 2 keys on the sweeper.
- (44) Repeat Steps (39) to (41).

[R3271 only]

(45) Press the FIX/NAR key on the R3271, and adjust the data control so that the entire frequency characteristics curve reaches its peak level.

Caution: Skip Steps (46) to (48) for the R3271, and jump to Step (50).

[R3265 only]

(46) Press the following keys in this sequence on the R3265.

(47)	Press the RECALL and 3 keys on the sweeper.
(48)	Repeat Steps (39) to (41).
(49)	Jump to Step (62) for data writing in the EEPROM.
[R32	271 only]
(50)	Press the following keys in this sequence on the R3271.
	BAND 3 Hz START 7 . 5 GHz
(51)	Press the RECALL and 3 keys on the sweeper.
(52)	Repeat Steps (39) to (41).
(53)	Press the [BIAS ADJ] key on the R3271, and adjust the data control so that the entire frequency characteristics curve reaches its peak level. If the frequency characteristics change, repeat Steps (40) and (41).
(54)	Press the following keys in this sequence on the R3271.
	BAND 4 Hz START 1 5 . 4 GHz
(55)	Press the RECALL and 4 keys on the sweeper.
(56)	Repeat Steps (39) to (41).
(57)	Press the HAS ADJ key on the R3271, and adjust the data control so that the entire frequency characteristics curve reaches its peak level. If the frequency characteristics change, repeat Steps (40) and (41).
(58)	Press the following keys in this sequence on the R3271.
	BAND 5 Hz START 2 3 . 3 GHz STOP 2 6 . 5 GHz
(59)	Press the RECALL and 5 keys on the sweeper.
(60)	Repeat Steps (39) to (41).
(61)	Press the [BIAS ADJ] key on the R3271, and adjust the data control so that the entire frequency characteristics curve reaches its peak level. If the frequency characteristics change, repeat Steps (40) and (41).

5.3 Adjustment

[Da	ta v	vriting	in	the	EEP	ROM]	

Caution: The original data is all erased from the EEPROM when data is written in it.

(62) Hold down the SHIFT key and press the N key on the R3265/3271, and wait for approximately 10 seconds. The data will be written in the EEPROM.

(63) Press the [RETURN] key twice.

5-44 Oct 28/91

5.3.9 Calibrator Amplitude Adjustment

- ASSEMBLY ADJUSTED WBL-32xxSYN (Synthesizer block)
- RELATED PERFORMANCE TEST Calibration amplitude accuracy

DESCRIPTION

The CALOUT amplitude is adjusted for -10.00 dBm measured directly at the front panel CALOUT jack.

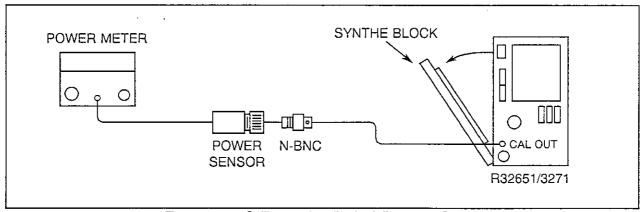


Figure 5-13 Calibrator Amplitude Adjustment Setup

EQUIPMENT

Power meter: HP436A HP8481A Adapter

Type N (female) to BNC (male): NJ-BNCP

PROCEDURE

- (1) Turn off the POWER switch of the R3265/3271, and disconnect the power cord. Remove the analyzer cover, place the analyzer as shown in Figure 5-13, and fold down the SYNTHE BLOCK assembly.
- (2) Turn on the POWER switch of R3265/3271, and warm it up at least 30 minutes before starting adjustment.
- (3) Zero and calibrate the power meter in the Log Display mode. Enter the 25MHz CAL FACTOR signal of the power sensor to the power meter.
- (4) Connect the R3265/3271 through an N-BNC adapter directly to the CALOUT jack on the R3265/3271 front panel.

5.3 Adjustment

(5) Adjust R151 of the SYNTHE block for a -10.00 dBm reading on the power meter display.

5 – 46 Jan 30/92

5.3.10 10MHz Frequency Reference Adjustment

ASSEMBLY ADJUSTED

Frequency reference assembly (WBL-32xxSTD)

• RELATED PERFORMANCE TEST

Frequency readout accuracy and frequency counter marker accuracy Frequency reference output accuracy

DESCRIPTION

Connect the signal cable between the 10MHz terminal of the Frequency Standard unit and the Frequency Comparator unit. Also, connect the cable between the 10MHz REF OUT terminal at the rear panel of R3265/3271 and the Frequency Comparator unit. Adjust the internal crystal oscillator of the R3265/3271.

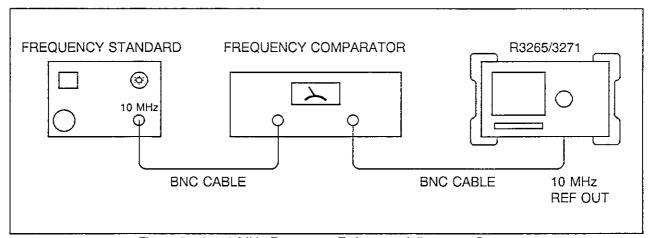


Figure 5-14 10 MHz Frequency Reference Adjustment Setup

EQUIPMENT

Two MI-09 cables with BNC (male), 150 cm long

nt

	.3 Adjustme
• PROCEDURE	
NOTE	
Allow the R3265/3271 warm up for at least 30 minutes before performing this adjustment	ent.
(1) Connect the equipment as shown in Figure 5-14.	
(2) Set the 10MHz REF of the R3265/3271 to INT.	
Press the CENTER FREQ and set the NT/EXT to INT.	
NOTE	
up. If the reference is set to EXT, set the reference to INT and allow 30 minutes crystal oscillator warm up.	
(3) Hold down the SHIFT key and press the 7 key to select the CAL FREGULAR Then, adjust the data control so that the frequency comparator indicates the $\pm 1 \times 10^{-8}$.]. value withi
(4) Press the Hz key to store the adjusted data.	
NOTE -	
If the adjusted data is within ± 100 but if it cannot be adjusted, set the data to z directly adjust the 10MHz reference crystal oscillator as follows.	ero and

- (5) Adjust the data control to set the data to zero, and press the Hz key to store the data.
- (6) Turn off the POWER switch of the R3265/3271, and disconnect the power cord and signal cables. Remove the analyzer cover, and fold down the WBL-32xxSYN synthesizer block.

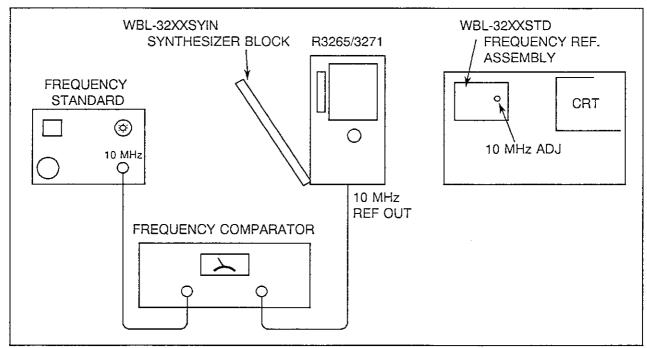


Figure 5-15 10 MHz Reference Cristal Oscillator Adjustment

- (7) Connect the equipment as shown in Figure 5-15.
- (8) Adjust the 10MHz ADJ control of the WBL-32xxSTD unit so that the indicator of frequency comparator reaches within $\pm 1 \times 10^{-8}$.

NOTE

Allow the R3265/3271 warmup for at least 30 minutes before performing this adjustment.

5.3.11 Frequency Span Adjustment

- ASSEMBLY ADJUSTED WBL-3265 I/O WBL-3271 I/O
- RELATED PERFORMANCE TEST Frequency span accuracy
- DESCRIPTION

Adjust the frequency span to have an appropriate Span Adjust DAC value of the WBL-3265 I/O (or WBL-3271 I/O).

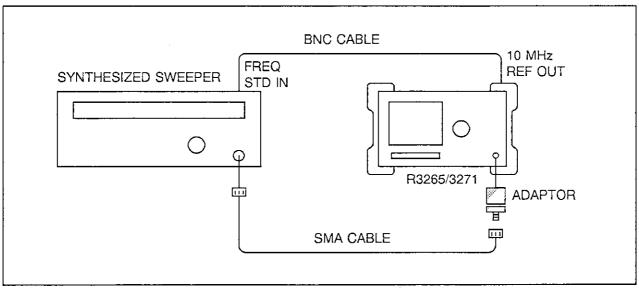


Figure 5-16 SPAN Adjustment Setup

• EQUIPMENT

 Synthesized sweeper:
 TR4515

 Adapter:
 Type N (male) to SMA (female)

 Cables:
 SMA (male), 70 cm long

 MI-09;
 BNC (male), 150 cm long

5.3 Adjustment

	PP	\cap	CE	\Box	i D	⊏
_		. •	-	-	/ [7	ᆮ

•	PRC	OCEDURE							
	(1)	Connect the equipment as shown in F	Figure 5-16.						
	(2)	Set the TR4515 controls as follows:							
		CW:	3.25 GHz –20 dBm						
	(3)	Press the PRESET key on the R326	5/3271, and set the controls as follows:						
		START FREQ:							
	(4)	Press the PEAK and NEXT keys	to set the CONT PK ON/OFF to ON.						
	(5)		the [5] key, enter "94284" for password, and select						
	(6)	Hold down the SHIFT key and press will appear on the CRT screen.	s the SPAN key, and the following software menu						
		LIN	CENTER						
		LOG START	SPAN						
		STOP	START						
		LOG GAIN	STOP						
		LOG	SPAN						
		OFFSET	ADJ						
		RETURN	RETURN						
		- NO	DTE						
Onc	e the	e MAINTENANCE mode is selected, ea	ach function can be set by software keys only.						

Jan 30/92

5.3 Adjustment

- (7) Press the [LIN] and [SPAN ADJ] keys, and adjust the data control to have the marker indication of 3.250 GHz ± 10 MHz.
- (8) Set the SYNTHESIZER SWEEPER frequency and the START and STOP frequencies of the R3265/3271 as defined on Table 5-3. Adjust the SPANADJ control to have the marker frequency within the limit given on the table.
- (9) Hold down the SHIFT key and press the MARKER ON key to write the adjusted data in the EEPROM.

Table 5-3 Span Adjustment

TD4515 Fragues av	R3265	5/3271	Marker Indication		
TR4515 Frequency	START Frequency	STOP Frequency	MIN	MAX	
3.25 GHz	100 MHz	3.6 GHz	3.240 GHz	3.260 GHz	
7.3 GHz	100 MHz	8.1 GHz	7.280 GHz	7.320 GHz	
460 MHz	100 MHz	500 MHz	458 MHz	462 MHz	
136 MHz	100 MHz	140 MHz	135.8 MHz	136.2 MHz	
109 MHz	100 MHz	110 MHz	108.95 MHz	109.05 MHz	
101.8 MHz	100 MHz	102 MHz	101.79 MHz	101.81 MHz	
100.36 MHz	100 MHz	100.4 MHz	100.358 MHz	100.362 MHz	
100.018 MHz	100 MHz	100.02 MHz	100.0179 MHz	100.0181 MHz	

[LOG SPAN Adjustment]

- (10) Press the RETURN and LOG keys.
- (11) Press the following keys in this sequence.

- (12) Set the synthesized sweeper frequency to 10 MHz.
- (13) Press the LOG offset key and adjust the data control to have the marker frequency of 10 ± 0.1 MHz.
- (14) Set the synthesized sweeper frequency to 900 MHz.
- (15) Press the LOG GAIN key and adjust the data control to have the marker frequency of 900 ± 10 MHz.

5.3 Adjustment

- (16) Repeat Steps (12) to (15), and adjust the data control so that the marker frequency comes within the limit defined on Table 5-4.
- (17) Set the synthesized sweeper frequency and the START and STOP frequencies of R3265/3271 to the values defined on Table 5-4, and repeat Steps (12) to (15).
- (18) Hold down the SHIFT key and press the ON key to write the adjusted data in the EEPROM.

Table 5-4 LOG SPAN Adjustment

R3265/3271			TR4515	Marker Indication		
START FREQ. STOP FREQ.		Adjustment.	Frequency	MIN	MAX	
4 1411	4.011	LOG OFFSET	10 MHz	9.9 MHz	10.1 MHz	
1 MHz	1 GHz	LOG GAIN	900 MHz	890 MHz	910 MHz	
40.141.1-	z 1 GHz	LOG OFFSET	20 MHz	19.8 MHz	20.2 MHz	
10 MHz		LOG GAIN	900 MHz	890 MHz	910 MHz	
100 MU-	4 011-	LOG OFFSET	200 MHz	198 MHz	202 MHz	
100 MHz	1 GHz	LOG GAIN	900 MHz	890 MHz	910 MHz	

5.3.12 Sample Synthesizer Adjustment

- ASSEMBLY ADJUSTED
 Synthesizer block (WBL-32xxSYN)
- RELATED PERFORMANCE TEST
 There is no related performance test.
- DESCRIPTION

The doubler of the sample synthesizer must be adjusted using the variable resistor to suppress spurious.

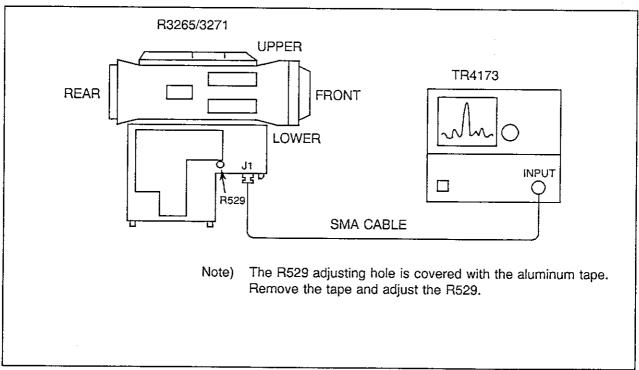


Figure 5-17 Sampler Synthe Adjustment

EQUIPMENT

 Spectrum analyzer:
 TR4173

 Cable:
 A01002;

 SMA (male), 70 cm long

PROCEDURE

- (1) Remove the cover from the system.
- (2) Remove three screws from the synthesizer board.
- (3) Unplug the SMA connector from J1.

5.3 Adjustment

(4)	Connect the SMA cable between J1 and TR4173 (see Figure 5-17).							
(5)	Turn on the POWER switch of R3265/3271, and set the controls as follows:							
	CENTER FREQ:							
(6)	Set the TR4173 controls as follows:							
	CF: SPAN: REF: RBW: VBW:	3985 MHz 10 MHz 20 dBm 10 kHz 300 kHz						
(7)	Make sure that the carrier exists at the center of TR7143 wavef so that the side signal amplitude is 55 dBc or more.	orms, and adjust the R529						

(8) Unplug the SMA cable from J1, and plug the original cable.

5.3.13 EXT Mixer Adjustment

ASSEMBLY ADJUSTED RF I/O assembly (BLL-017508x01/x02)

RELATED PERFORMANCE TEST There is no related performance test.

DESCRIPTION

Enter the 421.42MHz signals of the IF frequency of external (EXT) mixer to the first Lo OUT terminal, and adjust the BAND GAIN control of the EXT mixer band.

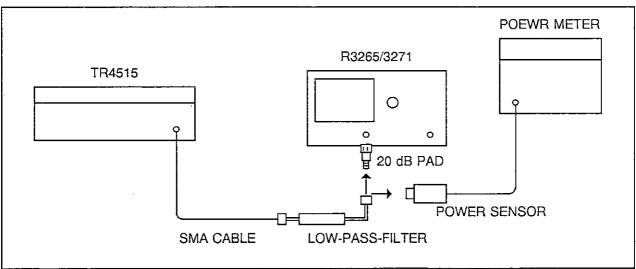


Figure 5-18 Frequency Response Adjustment (2) Setup

EQUIPMENT

Synthesized sweeper:	TR4515
Power meter:	HP436A
Power sensor:	HP8485A or HP8481A
2GHz low-pass filter:	DEE-001172-1
20dB PAD:	DEE-000480-1
Adapter:	
HRM-501;	SMA (female) to SMA (female)
Cable:	
A01002;	SMA (male)

5 - 56

5.3 Adjustment

•	P	0	\sim	\sim		ור	1	▭	П
•	т.	п	U	-	_ 1	_	u	п	ᆫ

PROCEDURE	
(1)	Zero and calibrate the power meter. Rotate and adjust the CAL FACTOR control to set the 421MHz calibration factor of the power sensor.
(2)	Connect the equipment as illustrated in Figure 5-18. However, connect the low-pass filter output to the power sensor.
(3)	Press the PRESET key of the TR4515, and set the controls as follows:
	CW: 421.42 MHz POWER LEVEL: -5 dBm
(4)	Adjust the POWER LEVEL of the TR4515 so that the power meter indicates -5 dBm.
(5)	Connect the low-pass filter output to the 20dB PAD, and connect to the 1st Lo OUT terminal of the R3265/3271.
(6)	Press the PRESET and CENTER FREQ keys on the R3265/3271 to set the MIX EXT
(7)	Hold down the SHIFT key and press the 5 key on the R3265/3271. When the "Please input password!!" message appears, enter "94284" for the password. Then, press the TUNE key.
(8)	Press the following keys and adjust the DATA control so that the signals appear on a horizontal line on the screen and they reach within ± 1 dB from the top of the screen.
	BAND 1 0 Hz SLOPE 0 Hz BAND GAIN
[Data writing in EEPROM]	
Caution: The original data is all erased from the EEPROM when data is written in it.	
(9)	Hold down the SHIFT key and press the MARKER ON key on the R3265/3271, and wait for approximately 10 seconds. The data will be written in the EEPROM.
(10)	Press the RETURN key twice.

MEMO Ø

IMPORTANT INFORMATION FOR ADVANTEST SOFTWARE

PLEASE READ CAREFULLY: This is an important notice for the software defined herein. Computer programs including any additions, modifications and updates thereof, operation manuals, and related materials provided by Advantest (hereafter referred to as "SOFTWARE"), included in or used with hardware produced by Advantest (hereafter referred to as "PRODUCTS").

SOFTWARE License

All rights in and to the SOFTWARE (including, but not limited to, copyright) shall be and remain vested in Advantest. Advantest hereby grants you a license to use the SOFTWARE only on or with Advantest PRODUCTS.

Restrictions

- (1) You may not use the SOFTWARE for any purpose other than for the use of the PRODUCTS.
- (2) You may not copy, modify, or change, all or any part of, the SOFTWARE without permission from Advantest.
- (3) You may not reverse engineer, de-compile, or disassemble, all or any part of, the SOFTWARE.

Liability

Advantest shall have no liability (1) for any PRODUCT failures, which may arise out of any misuse (misuse is deemed to be use of the SOFTWARE for purposes other than it's intended use) of the SOFTWARE. (2) For any dispute between you and any third party for any reason whatsoever including, but not limited to, infringement of intellectual property rights.

LIMITED WARRANTY

- 1. Unless otherwise specifically agreed by Seller and Purchaser in writing, Advantest will warrant to the Purchaser that during the Warranty Period this Product (other than consumables included in the Product) will be free from defects in material and workmanship and shall conform to the specifications set forth in this Operation Manual.
- 2. The warranty period for the Product (the "Warranty Period") will be a period of one year commencing on the delivery date of the Product.
- 3. If the Product is found to be defective during the Warranty Period, Advantest will, at its option and in its sole and absolute discretion, either (a) repair the defective Product or part or component thereof or (b) replace the defective Product or part or component thereof, in either case at Advantest's sole cost and expense.
- 4. This limited warranty will not apply to defects or damage to the Product or any part or component thereof resulting from any of the following:
 - (a) any modifications, maintenance or repairs other than modifications, maintenance or repairs (i) performed by Advantest or (ii) specifically recommended or authorized by Advantest and performed in accordance with Advantest's instructions;
 - (b) any improper or inadequate handling, carriage or storage of the Product by the Purchaser or any third party (other than Advantest or its agents);
 - (c) use of the Product under operating conditions or environments different than those specified in the Operation Manual or recommended by Advantest, including, without limitation, (i) instances where the Product has been subjected to physical stress or electrical voltage exceeding the permissible range and (ii) instances where the corrosion of electrical circuits or other deterioration was accelerated by exposure to corrosive gases or dusty environments;
 - (d) use of the Product in connection with software, interfaces, products or parts other than software, interfaces, products or parts supplied or recommended by Advantest;
 - (e) incorporation in the Product of any parts or components (i) provided by Purchaser or (ii) provided by a third party at the request or direction of Purchaser or due to specifications or designs supplied by Purchaser (including, without limitation, any degradation in performance of such parts or components);
 - (f) Advantest's incorporation or use of any specifications or designs supplied by Purchaser;
 - (g) the occurrence of an event of force majeure, including, without limitation, fire, explosion, geological change, storm, flood, earthquake, tidal wave, lightning or act of war; or
 - (h) any negligent act or omission of the Purchaser or any third party other than Advantest.
- 5. EXCEPT TO THE EXTENT EXPRESSLY PROVIDED HEREIN, ADVANTEST HEREBY EXPRESSLY DISCLAIMS, AND THE PURCHASER HEREBY WAIVES, ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, (A) ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND (B) ANY WARRANTY OR REPRESENTATION AS TO THE VALIDITY, SCOPE, EFFECTIVENESS OR USEFULNESS OF ANY TECHNOLOGY OR ANY INVENTION.
- 6. THE REMEDY SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDY OF THE PURCHASER FOR BREACH OF WARRANTY WITH RESPECT TO THE PRODUCT.
- 7. ADVANTEST WILL NOT HAVE ANY LIABILITY TO THE PURCHASER FOR ANY INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL OR PUNITIVE DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS OF ANTICIPATED PROFITS OR REVENUES, IN ANY AND ALL CIRCUMSTANCES, EVEN IF ADVANTEST HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND WHETHER ARISING OUT OF BREACH OF CONTRACT, WARRANTY, TORT (INCLUDING, WITHOUT LIMITATION, NEGLIGENCE), STRICT LIABILITY, INDEMNITY, CONTRIBUTION OR OTHERWISE. TORT (INCLUDING, WITHOUT LIMITATION, NEGLIGENCE), STRICT LIABILITY, INDEMNITY, CONTRIBUTION OR OTHERWISE.
- 8. OTHER THAN THE REMEDY FOR THE BREACH OF WARRANTY SET FORTH HEREIN, ADVANTEST SHALL NOT BE LIABLE FOR, AND HEREBY DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ANY LIABILITY FOR, DAMAGES FOR PRODUCT FAILURE OR DEFECT, WHETHER ARISING OUT OF BREACH OF CONTRACT, TORT (INCLUDING, WITHOUT LIMITATION, NEGLEGENCE), STRICT LIABILITY, INDEMNITY, CONTRIBUTION OR OTHERWISE.

CUSTOMER SERVICE DESCRIPTION

In order to maintain safe and trouble-free operation of the Product and to prevent the incurrence of unnecessary costs and expenses, Advantest recommends a regular preventive maintenance program under its maintenance agreement.

Advantest's maintenance agreement provides the Purchaser on-site and off-site maintenance, parts, maintenance machinery, regular inspections, and telephone support and will last a maximum of ten years from the date the delivery of the Product. For specific details of the services provided under the maintenance agreement, please contact the nearest Advantest office listed at the end of this Operation Manual or Advantest 's sales representatives.

Some of the components and parts of this Product have a limited operating life (such as, electrical and mechanical parts, fan motors, unit power supply, etc.). Accordingly, these components and parts will have to be replaced on a periodic basis. If the operating life of a component or part has expired and such component or part has not been replaced, there is a possibility that the Product will not perform properly. Additionally, if the operating life of a component or part has expired and continued use of such component or part damages the Product, the Product may not be repairable. Please contact the nearest Advantest office listed at the end of this Operation Manual or Advantest's sales representatives to determine the operating life of a specific component or part, as the operating life may vary depending on various factors such as operating condition and usage environment.

SALES & SUPPORT OFFICES

Advantest Korea Co., Ltd.

22BF, Kyobo KangNam Tower,

1303-22, Seocho-Dong, Seocho-Ku, Seoul #137-070, Korea

Phone: +82-2-532-7071 Fax: +82-2-532-7132

Advantest (Suzhou) Co., Ltd.

Shanghai Branch Office:

Bldg. 6D, NO.1188 Gumei Road, Shanghai, China 201102 P.R.C.

Phone: +86-21-6485-2725 Fax: +86-21-6485-2726

Shanghai Branch Office:

406/F, Ying Building, Quantum Plaza, No. 23 Zhi Chun Road,

Hai Dian District, Beijing,

China 100083

Phone: +86-10-8235-3377 Fax: +86-10-8235-6717

Advantest (Singapore) Pte. Ltd.

438A Alexandra Road, #08-03/06

Alexandra Technopark Singapore 119967

Phone: +65-6274-3100 Fax: +65-6274-4055

Advantest America, Inc.

3201 Scott Boulevard, Suite, Santa Clara, CA 95054, U.S.A

Phone: +1-408-988-7700 Fax: +1-408-987-0691

ROHDE & SCHWARZ Europe GmbH

Mühldorfstraße 15 D-81671 München, Germany (P.O.B. 80 14 60 D-81614 München, Germany)

Phone: +49-89-4129-13711 Fax: +49-89-4129-13723

http://www.advantest.co.jp